The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model
Abstract An in vivo study was carried out on uncoated and hydroxyapatite (HA)-coated nanostructured Ti13Nb11Zr alloy in comparison with high-grade Ti6Al4V, to investigate the effect of the different surfaces on osteointegration rate. A highly effective method to obtain a fast biomimetic deposition o...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2008-04, Vol.29 (11), p.1730-1736 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract An in vivo study was carried out on uncoated and hydroxyapatite (HA)-coated nanostructured Ti13Nb11Zr alloy in comparison with high-grade Ti6Al4V, to investigate the effect of the different surfaces on osteointegration rate. A highly effective method to obtain a fast biomimetic deposition of a thin layer of nanocrystalline HA was applied to coat both substrates. Cylindrical pins were implanted in rabbit cortical bone and evaluated at 4 and 12 weeks by histomorphometry and microhardness tests. The results confirmed the ability of the slightly supersaturated Ca/P solution to induce a fast deposition of nanocrystalline HA on Ti alloys' surfaces. HA-coated Ti13Nb11Zr had the highest osteointegration rate at 4 and 12 weeks. Both HA-coated surfaces showed an affinity index significantly higher than those of native surfaces at 4 weeks (Ti13Nb11Zr + HA: 37%; Ti6Al4V + HA: 26%). Microhardness test showed a significantly higher bone mineralization index of HA-coated Ti13Nb11Zr in comparison with that of HA-coated Ti6Al4V surface. The study suggests that the HA coating on both alloys enhances bone response around implants and that there is a synergic effect of Ti–Nb–Zr alloy with the HA coating on bone remodeling and maturation. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2007.12.011 |