Proton Spin Diffusion in Polyethylene as a Function of Magic-Angle Spinning Rate. A Phenomenological Approach

Starting from the phenomenological Bloembergen−Purcell−Pound equation a relation between magic-angle spinning (MAS) rate and spin diffusion is derived. The resulting model equation was fitted to observed spin diffusion versus MAS rate data obtained at 298 K on an high-density polyethylene sample, re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2008-02, Vol.112 (6), p.1228-1233
Hauptverfasser: Jia, Zhenlong, Zhang, Lili, Chen, Qun, Hansen, E. W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Starting from the phenomenological Bloembergen−Purcell−Pound equation a relation between magic-angle spinning (MAS) rate and spin diffusion is derived. The resulting model equation was fitted to observed spin diffusion versus MAS rate data obtained at 298 K on an high-density polyethylene sample, revealing a reduction in the effective spin diffusivity by (65 + 5)% when increasing the MAS rate from 2 to 12 kHz. The same model equation enabled the rigid-lattice diffusivity to be estimated and was found to be only slightly higher, by approximately 10%, compared to the spin diffusivity observed at the lowest MAS rate applied (2 kHz). Moreover, the model equation predicts a reduction in the effective spin diffusivity by more than 90% when increasing the MAS rate to more than 30 kHz.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp077067u