Highly selective and sensitive gas chromatography–electron-capture negative-ion mass spectrometry method for the indirect enantioselective identification of 2- and 3-hydroxy fatty acids in food and biological samples
A gas chromatographic (GC) method is described for the indirect enantioresolution of 2- and 3-hydroxy fatty acids (OH-FAs). It combines the derivatization of each alkylated enantiomer and the subsequent transfer with ( R)-(−)- α-methoxy- α-trifluoromethylphenylacetyl chloride [( R)-(−)-MTPA-Cl, Mosh...
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 2007-04, Vol.1146 (2), p.225-231 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A gas chromatographic (GC) method is described for the indirect enantioresolution of 2- and 3-hydroxy fatty acids (OH-FAs). It combines the derivatization of each alkylated enantiomer and the subsequent transfer with (
R)-(−)-
α-methoxy-
α-trifluoromethylphenylacetyl chloride [(
R)-(−)-MTPA-Cl, Mosher's reagent] into a diastereomeric (
S)-MTPA derivative. The enantiomers of each derivatized OH-FA were well separated on three non-chiral GC-columns (CP-Sil 2, CP-Sil 8/20% C18 and VF-5
ms). The derivatives were detected with high sensitivity by GC with electron-capture detection (GC/ECD) and electron-capture negative-ion mass spectrometry (GC/ECNI-MS) because of their enhanced electron-capturing properties. When applied to sunflower oil spiked with a small amount of a racemic 2-OH-FA, the present method allowed for a highly selective identification without influence from the sample matrix. For more complex samples such as wool wax, GC/ECNI-MS was superior to GC/ECD, since the high sensitivity of this method was linked with high selectivity. Using GC/ECNI-MS in the selected ion monitoring (SIM) mode, 16 enantiopure 2-OH-FAs were detected in a wool wax sample. |
---|---|
ISSN: | 0021-9673 |
DOI: | 10.1016/j.chroma.2007.01.102 |