Automated characterization of multiple alpha peaks in multi-site electroencephalograms

The identification of alpha rhythm in the human electroencephalogram (EEG) is generally a laborious task involving visual inspection of the spectrum. Moreover the occurrence of multiple alpha rhythms is often overlooked. This paper seeks to automate the process of identifying alpha peaks and quantif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuroscience methods 2008-03, Vol.168 (2), p.396-411
Hauptverfasser: Chiang, A.K.I., Rennie, C.J., Robinson, P.A., Roberts, J.A., Rigozzi, M.K., Whitehouse, R.W., Hamilton, R.J., Gordon, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The identification of alpha rhythm in the human electroencephalogram (EEG) is generally a laborious task involving visual inspection of the spectrum. Moreover the occurrence of multiple alpha rhythms is often overlooked. This paper seeks to automate the process of identifying alpha peaks and quantifying their frequency, amplitude and width as a function of position on the scalp. Experimental EEG was fitted with parameterized spectra spanning the alpha range, with results categorized by multi-site criteria into three distinct classes: no distinguishable alpha peak, a single alpha peak, and two alpha peaks. The technique avoids visual bias, integrates spatial information, and is automated. We show that multiple alpha peaks are a common feature of many spectra.
ISSN:0165-0270
1872-678X
DOI:10.1016/j.jneumeth.2007.11.001