Dynamical organization of cooperation in complex topologies

In this Letter, we study how cooperation is organized in complex topologies by analyzing the evolutionary (replicator) dynamics of the prisoner's dilemma, a two-player game with two available strategies, defection and cooperation, whose payoff matrix favors defection. We show that, asymptotical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2007-03, Vol.98 (10), p.108103-108103, Article 108103
Hauptverfasser: Gómez-Gardeñes, J, Campillo, M, Floría, L M, Moreno, Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this Letter, we study how cooperation is organized in complex topologies by analyzing the evolutionary (replicator) dynamics of the prisoner's dilemma, a two-player game with two available strategies, defection and cooperation, whose payoff matrix favors defection. We show that, asymptotically, the population is partitioned into three subsets: individuals that always cooperate (pure cooperators), always defect (pure defectors), and those that intermittently change their strategy. In fact, the size of the later set is the biggest for a wide range of the "stimulus to defect" parameter. While in homogeneous random graphs pure cooperators are grouped into several clusters, in heterogeneous scale-free (SF) networks they always form a single cluster containing the most connected individuals (hubs). Our results give further insights into why cooperation in SF networks is enhanced.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.98.108103