Structural insights into the dual activity of RNase J

The maturation and stability of RNA transcripts is controlled by a combination of endo- and exoRNases. RNase J is unique, as it combines an RNase E–like endoribonucleolytic and a 5′-to-3′ exoribonucleolytic activity in a single polypeptide. The structural basis for this dual activity is unknown. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2008-02, Vol.15 (2), p.206-212
Hauptverfasser: Putzer, Harald, Jamalli, Ailar, de la Sierra-Gallay, Inés Li, Zig, Léna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The maturation and stability of RNA transcripts is controlled by a combination of endo- and exoRNases. RNase J is unique, as it combines an RNase E–like endoribonucleolytic and a 5′-to-3′ exoribonucleolytic activity in a single polypeptide. The structural basis for this dual activity is unknown. Here we report the crystal structures of Thermus thermophilus RNase J and its complex with uridine 5′-monophosphate. A binding pocket coordinating the phosphate and base moieties of the nucleotide in the vicinity of the catalytic center provide a rationale for the 5′-monophosphate–dependent 5′-to-3′ exoribonucleolytic activity. We show that this dependence is strict; an initial 5′-PPP transcript cannot be degraded exonucleolytically from the 5′-end. Our results suggest that RNase J might switch promptly from endo- to exonucleolytic mode on the same RNA, a property that has important implications for RNA metabolism in numerous prokaryotic organisms and plant organelles containing RNase J orthologs.
ISSN:1545-9993
1545-9985
DOI:10.1038/nsmb.1376