Origin of transient and intermittent dynamics in spatiotemporal chaotic systems
Nonattracting chaotic sets (chaotic saddles) are shown to be responsible for transient and intermittent dynamics in an extended system exemplified by a nonlinear regularized long-wave equation, relevant to plasma and fluid studies. As the driver amplitude is increased, the system undergoes a transit...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2007-01, Vol.98 (1), p.014101-014101, Article 014101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nonattracting chaotic sets (chaotic saddles) are shown to be responsible for transient and intermittent dynamics in an extended system exemplified by a nonlinear regularized long-wave equation, relevant to plasma and fluid studies. As the driver amplitude is increased, the system undergoes a transition from quasiperiodicity to temporal chaos, then to spatiotemporal chaos. The resulting intermittent time series of spatiotemporal chaos displays random switching between laminar and bursty phases. We identify temporally and spatiotemporally chaotic saddles which are responsible for the laminar and bursty phases, respectively. Prior to the transition to spatiotemporal chaos, a spatiotemporally chaotic saddle is responsible for chaotic transients that mimic the dynamics of the post-transition attractor. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.98.014101 |