A synthetic diamond probe for low-energy X-ray dose measurements

The desirable physical properties of diamond have made the mineral a choice material in radiation measurements. Diamond detectors are currently used extensively in high-energy physics. Their use for low-energy beams such as, for example, in mammography X-ray beams however, has not been fully investi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied radiation and isotopes 2007-05, Vol.65 (5), p.545-552
Hauptverfasser: Assiamah, M., Nam, T.L., Keddy, R.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The desirable physical properties of diamond have made the mineral a choice material in radiation measurements. Diamond detectors are currently used extensively in high-energy physics. Their use for low-energy beams such as, for example, in mammography X-ray beams however, has not been fully investigated. This paper describes a diamond probe which has been constructed for the evaluation, as the radiation sensing material, of polycrystalline synthetic diamonds produced by chemical vapour deposition (CVD). The specimens were fabricated in wafer form and so the exposure orientation geometry of the diamond wafers, to give optimum absorption of the incident X-ray beam, was also investigated both experimentally and theoretically. The samples were characterized to obtain information regarding the elemental impurity levels, especially nitrogen, and consequently to establish the material quality. Nitrogen impurities and concentration levels in the diamond lattice have been shown to have a profound effect on the radiation detection properties of diamond. The probe described has the diamond surfaces metallized with titanium, platinum and gold to provide ohmic contacts. The probe was connected independently to both Wellhöfer Dosimetrie (model CU 500) and PTW Unidos E commercial electrometers. In all of the measurements, the incident radiation beam was normal to the edge of the diamond wafer to optimize absorption of the X-ray beam after establishing that this orientation was the optimum geometry. The results of the study are presented in both tabular and graphical forms.
ISSN:0969-8043
1872-9800
DOI:10.1016/j.apradiso.2006.11.009