Spherical nonlinear correlations for global invariant three-dimensional object recognition
We define a nonlinear filtering based on correlations on unit spheres to obtain both rotation- and scale-invariant three-dimensional (3D) object detection. Tridimensionality is expressed in terms of range images. The phase Fourier transform (PhFT) of a range image provides information about the orie...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2008-02, Vol.47 (4), p.A43-A51 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We define a nonlinear filtering based on correlations on unit spheres to obtain both rotation- and scale-invariant three-dimensional (3D) object detection. Tridimensionality is expressed in terms of range images. The phase Fourier transform (PhFT) of a range image provides information about the orientations of the 3D object surfaces. When the object is sequentially rotated, the amplitudes of the different PhFTs form a unit radius sphere. On the other hand, a scale change is equivalent to a multiplication of the amplitude of the PhFT by a constant factor. The effect of both rotation and scale changes for 3D objects means a change in the intensity of the unit radius sphere. We define a 3D filtering based on nonlinear operations between spherical correlations to achieve both scale- and rotation-invariant 3D object recognition. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/AO.47.000A43 |