BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis

Genetic studies in mice and humans have shown that the transforming growth factor-β (TGF-β) type-I receptor activin receptor-like kinase 1 (ALK1) and its co-receptor endoglin play an important role in vascular development and angiogenesis. Here, we demonstrate that ALK1 is a signalling receptor for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2007-03, Vol.120 (6), p.964-972
Hauptverfasser: Scharpfenecker, Marion, van Dinther, M, Liu, Zhen, van Bezooijen, R.L, Zhao, Qinghai, Pukac, Laurie, Löwik, Clemens W.G.M, ten Dijke, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic studies in mice and humans have shown that the transforming growth factor-β (TGF-β) type-I receptor activin receptor-like kinase 1 (ALK1) and its co-receptor endoglin play an important role in vascular development and angiogenesis. Here, we demonstrate that ALK1 is a signalling receptor for bone morphogenetic protein-9 (BMP-9) in endothelial cells (ECs). BMP-9 bound with high affinity to ALK1 and endoglin, and weakly to the type-I receptor ALK2 and to the BMP type-II receptor (BMPR-II) and activin type-II receptor (ActR-II) in transfected COS cells. Binding of BMP-9 to ALK2 was greatly facilitated when BMPR-II or ActR-II were co-expressed. Whereas BMP-9 predominantly bound to ALK1 and BMPR-II in ECs, it bound to ALK2 and BMPR-II in myoblasts. In addition, we observed binding of BMP-9 to ALK1 and endoglin in glioblastoma cells. BMP-9 activated Smad1 and/or Smad5, and induced ID1 protein and endoglin mRNA expression in ECs. Furthermore, BMP-9 was found to inhibit basic fibroblast growth factor (bFGF)-stimulated proliferation and migration of bovine aortic ECs (BAECs) and to block vascular endothelial growth factor (VEGF)-induced angiogenesis. Taken together, these results suggest that BMP-9 is a physiological ALK1 ligand that plays an important role in the regulation of angiogenesis.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.002949