Enhanced Activation of Epidermal Growth Factor Receptor Caused by Tumor-Derived E-Cadherin Mutations

Mutations of the tumor suppressor E-cadherin and overexpression of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) are among the most frequent genetic alterations associated with diffuse-type gastric carcinoma. Accumulating evidence suggests a functional relationship between E-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2008-02, Vol.68 (3), p.707-714
Hauptverfasser: BREMM, Anja, WALCH, Axel, HANN VON WEYHERN, Claus, HÖFLER, Heinz, LUBER, Birgit, FUCHS, Margit, MAGES, Jörg, DUYSTER, Justus, KELLER, Gisela, HERMANNSTÄDTER, Christine, BECKER, Karl-Friedrich, RAUSER, Sandra, LANGER, Rupert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutations of the tumor suppressor E-cadherin and overexpression of the receptor tyrosine kinase epidermal growth factor receptor (EGFR) are among the most frequent genetic alterations associated with diffuse-type gastric carcinoma. Accumulating evidence suggests a functional relationship between E-cadherin and EGFR that regulates both proteins. We report that somatic mutation of E-cadherin is associated with increased activation of EGFR followed by enhanced recruitment of the downstream acting signaling components growth factor receptor binding protein 2 and Shc, and activation of Ras. Reduced complex formation of mutant E-cadherin - with an in frame deletion of exon 8 in the extracellular domain resulting in reduced adhesion and increased motility - with EGFR was observed compared with wild-type E-cadherin. We conclude that reduced binding of mutant E-cadherin to EGFR in a multicomponent complex or reduced stability of the complex may enhance EGFR surface motility, thereby facilitating EGFR dimerization and activation. Furthermore, reduced surface localization due to enhanced internalization of mutant E-cadherin compared with the wild-type protein was observed. The internalization of EGFR was decreased in response to epidermal growth factor stimulation in cells expressing mutant E-cadherin, suggesting that mutation of E-cadherin also influences the endocytosis of EGFR. Moreover, we show increased activation of EGFR in gastric carcinoma samples with mutant E-cadherin lacking exons 8 or 9. In summary, we describe activation of EGFR by mutant E-cadherin as a novel mechanism in tumor cells that explains the enhanced motility of tumor cells in the presence of an extracellular mutation of E-cadherin.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-07-1588