MAPK interacts with XGef and is required for CPEB activation during meiosis in Xenopus oocytes

Meiotic progression in Xenopus oocytes, and all other oocytes investigated, is dependent on polyadenylation-induced translation of stockpiled maternal mRNAs. Early during meiotic resumption, phosphorylation of CPE-binding protein (CPEB) is required for polyadenylation-induced translation of mRNAs en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2007-03, Vol.120 (6), p.1093-1103
Hauptverfasser: Keady, Brian T, Kuo, Peiwen, Martínez, Susana E, Yuan, Lei, Hake, Laura E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Meiotic progression in Xenopus oocytes, and all other oocytes investigated, is dependent on polyadenylation-induced translation of stockpiled maternal mRNAs. Early during meiotic resumption, phosphorylation of CPE-binding protein (CPEB) is required for polyadenylation-induced translation of mRNAs encoding cell cycle regulators. Xenopus Gef (XGef), a Rho-family guanine-exchange factor, influences the activating phosphorylation of CPEB. An exchange-deficient version of XGef does not, therefore implicating Rho-family GTPase function in early meiosis. We show here that Clostridium difficile Toxin B, a Rho-family GTPase inhibitor, does not impair early CPEB phosphorylation or progression to germinal vesicle breakdown, indicating that XGef does not influence these events through activation of a Toxin-B-sensitive GTPase. Using the inhibitors U0126 for mitogen-activated protein kinase (MAPK), and ZM447439 for Aurora kinase A and Aurora kinase B, we found that MAPK is required for phosphorylation of CPEB, whereas Aurora kinases are not. Furthermore, we do not detect active Aurora kinase A in early meiosis. By contrast, we observe an early, transient activation of MAPK, independent of Mos protein expression. MAPK directly phosphorylates CPEB on four residues (T22, T164, S184, S248), but not on S174, a key residue for activating CPEB function. Notably, XGef immunoprecipitates contain MAPK, and this complex can phosphorylate CPEB. MAPK may prime CPEB for phosphorylation on S174 by an as-yet-unidentified kinase or may activate this kinase.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.03416