Explicit symplectic integrators of molecular dynamics algorithms for rigid-body molecules in the canonical, isobaric-isothermal, and related ensembles
The authors propose explicit symplectic integrators of molecular dynamics (MD) algorithms for rigid-body molecules in the canonical and isobaric-isothermal ensembles. They also present a symplectic algorithm in the constant normal pressure and lateral surface area ensemble and that combined with the...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2007-02, Vol.126 (8), p.084103-084103 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The authors propose explicit symplectic integrators of molecular dynamics (MD) algorithms for rigid-body molecules in the canonical and isobaric-isothermal ensembles. They also present a symplectic algorithm in the constant normal pressure and lateral surface area ensemble and that combined with the Parrinello-Rahman algorithm. Employing the symplectic integrators for MD algorithms, there is a conserved quantity which is close to Hamiltonian. Therefore, they can perform a MD simulation more stably than by conventional nonsymplectic algorithms. They applied this algorithm to a TIP3P pure water system at 300 K and compared the time evolution of the Hamiltonian with those by the nonsymplectic algorithms. They found that the Hamiltonian was conserved well by the symplectic algorithm even for a time step of 4 fs. This time step is longer than typical values of 0.5-2 fs which are used by the conventional nonsymplectic algorithms. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2434972 |