Computational Study-Led Organocatalyst Design: A Novel, Highly Active Urea-Based Catalyst for Addition Reactions to Epoxides
An in silico study examined the stabilities of hydrogen-bonded complexes between simple thiourea catalysts and three different electrophiles and identified a novel, highly active N-tosyl urea catalyst for the promotion of addition reactions to epoxide electrophiles. Synthesis and evaluation of 6 rev...
Gespeichert in:
Veröffentlicht in: | Journal of organic chemistry 2008-02, Vol.73 (3), p.948-956 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An in silico study examined the stabilities of hydrogen-bonded complexes between simple thiourea catalysts and three different electrophiles and identified a novel, highly active N-tosyl urea catalyst for the promotion of addition reactions to epoxide electrophiles. Synthesis and evaluation of 6 revealed it to be a powerful catalyst for the addition of 1,2-dimethylindole to styrene oxide under conditions in which simple N,N-bis-aryl ureas and thioureas (including 1) are inactive. Subsequent studies determined 6 to be compatible with a range of indole and epoxide substrates (including (E)-stilbene oxide) and found that relatively poor nucleophiles such as sterically and electronically deactivated anilines, thiophenol, and benzyl alcohol could be efficiently and regioselectively added to oxiranes under mild conditions. |
---|---|
ISSN: | 0022-3263 1520-6904 |
DOI: | 10.1021/jo702154m |