Genetic Variation in Mouse Beta Globin Cysteine Content Modifies Glutathione Metabolism: Implications for the Use of Mouse Models

Allelic variation in the mouse beta globin gene complex (Hbb) produces structurally different beta globins in different mouse strains. Like humans, mice with HbbS alleles produce a single beta globin with one reactive cysteine (β Cys93). In contrast, mice with HbbD alleles produce two structurally d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental biology and medicine (Maywood, N.J.) N.J.), 2007-03, Vol.232 (3), p.437-444
Hauptverfasser: Hempe, James M., Ory-Ascani, Jeannine, Hsia, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Allelic variation in the mouse beta globin gene complex (Hbb) produces structurally different beta globins in different mouse strains. Like humans, mice with HbbS alleles produce a single beta globin with one reactive cysteine (β Cys93). In contrast, mice with HbbD alleles produce two structurally different beta globins, each containing an additional cysteine (β Cys13). β Cys93 forms mixed disulfides with glutathione and plays a pivotal role in the activities of hemoglobin, glutathione, and nitric oxide. Similar roles for mouse β Cys13 have not been described. We used capillary electrophoresis to compare reduced glutathione (GSH), glutathione disulfide (GSSG), and S-glutathionyl hemoglobin levels in erythrocytes from inbred C57BL/6J (homozygous HbbS/S) and 129S1/SvImJ (homozygous HbbD/D) mice and their homozygous and heterozygous B6129S/F2J hybrid offspring. S-glutathionyl hemoglobin was nearly undetectable in inbred or hybrid mice with only monocysteinyl beta globins (HbbS/S) but represented up to 10% of total hemoglobin in mice with polycysteinyl beta globins (HbbS/D or HbbD/D). The stepwise increase in beta globin sulfhydryl group concentration in HbbS/S, HbbS/D, and HbbD/D F2 mice was associated with increasing hemoglobin-bound glutathione and decreasing free glutathione (GSH + GSSG) concentrations. Total erythrocyte glutathione (GSH + GSSG + hemoglobin-bound) was not significantly different between groups. In vitro studies showed that β Cys13 in mouse HbbD beta globins was more susceptible to disulfide exchange with GSSG than β Cys93. We conclude that reactive beta globin sulfhydryl group concentration is genetically determined in mice, and that polycysteinyl beta globins markedly influence intraerythrocyte glutathione distribution between free and hemoglobin-bound compartments. Although Hbb heterozygosity and polycysteinyl beta globins are common in wild mouse populations, all common human beta globins contain only one reactive cysteine, and homozygosity is the norm. These fundamental differences in mouse and human beta globin genetics have important implications for the study of mouse biology and for the use of some mouse strains as models for humans.
ISSN:1535-3702
1535-3699
1535-3699
1535-3702
DOI:10.3181/00379727-232-2320437