Correction of the Preston equation for low speeds
According to Preston [J. Soc. Glass Technol. 11, 214 (1927)], the wear on a glass point in the polishing process is proportional to the work given by frictional force between glass and tool. He supposed that the frictional coefficient is a constant value. To verify this hypothesis, we measured the d...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2007-03, Vol.46 (9), p.1408-1410 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | According to Preston [J. Soc. Glass Technol. 11, 214 (1927)], the wear on a glass point in the polishing process is proportional to the work given by frictional force between glass and tool. He supposed that the frictional coefficient is a constant value. To verify this hypothesis, we measured the dragging forces applied to a tool as a function of the relative speed between a rotating glass and the tool center. To reproduce these experimental results, it was necessary to propose a new model, for which the frictional coefficient has a Gaussian dependence with relative speed. Therefore the wearing Preston equation has to be modified in order to include the frictional coefficient as a function of the relative speed. |
---|---|
ISSN: | 1559-128X 0003-6935 1539-4522 |
DOI: | 10.1364/AO.46.001408 |