Polymeric grape-seed procyanidins, but not monomeric catechins and oligomeric procyanidins, impair degranulation and membrane ruffling in RBL-2H3 cells

Grape-seed proanthocyanidins (GSPs) are catechin polymers that are predicted to form helices in their global minimum-energy conformation and to have a mean degree of polymerization of seven (mDP = 7). The highly polymerized GSP-H fraction (mDP = 10) was found to impair degranulation in RBL-2H3 cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioorganic & medicinal chemistry 2006-02, Vol.14 (3), p.641-649
Hauptverfasser: Kondo, Kazunari, Uchida, Riichiro, Tokutake, Shoichi, Maitani, Tamio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grape-seed proanthocyanidins (GSPs) are catechin polymers that are predicted to form helices in their global minimum-energy conformation and to have a mean degree of polymerization of seven (mDP = 7). The highly polymerized GSP-H fraction (mDP = 10) was found to impair degranulation in RBL-2H3 cells after stimulation with an antigen (Ag) and treatment with the Ca-ATPase inhibitor thapsigargin (Tg). In addition, GSP-H affected actin cytoskeleton and inhibited membrane ruffling in these cells, resulting in the suppression of exocytosis. By contrast, monomeric epicatechin, the dimeric procyanidins PA-1, PA-2, and PB-2, and the oligomerized GSP-L (mDP = 3) had no effect on membrane ruffling and degranulation. These findings indicate that the molecular size and length of GSP-H are needed for the inhibition of membrane ruffling and degranulation in RBL-2H3 mast-cell lines.
ISSN:0968-0896
1464-3391
DOI:10.1016/j.bmc.2005.08.051