Polymeric grape-seed procyanidins, but not monomeric catechins and oligomeric procyanidins, impair degranulation and membrane ruffling in RBL-2H3 cells
Grape-seed proanthocyanidins (GSPs) are catechin polymers that are predicted to form helices in their global minimum-energy conformation and to have a mean degree of polymerization of seven (mDP = 7). The highly polymerized GSP-H fraction (mDP = 10) was found to impair degranulation in RBL-2H3 cells...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2006-02, Vol.14 (3), p.641-649 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Grape-seed proanthocyanidins (GSPs) are catechin polymers that are predicted to form helices in their global minimum-energy conformation and to have a mean degree of polymerization of seven (mDP
=
7). The highly polymerized GSP-H fraction (mDP
=
10) was found to impair degranulation in RBL-2H3 cells after stimulation with an antigen (Ag) and treatment with the Ca-ATPase inhibitor thapsigargin (Tg). In addition, GSP-H affected actin cytoskeleton and inhibited membrane ruffling in these cells, resulting in the suppression of exocytosis. By contrast, monomeric epicatechin, the dimeric procyanidins PA-1, PA-2, and PB-2, and the oligomerized GSP-L (mDP
=
3) had no effect on membrane ruffling and degranulation. These findings indicate that the molecular size and length of GSP-H are needed for the inhibition of membrane ruffling and degranulation in RBL-2H3 mast-cell lines. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2005.08.051 |