Ascorbate peroxidase gene family in tomato: its identification and characterization

The antioxidative response, where ascorbate peroxidase (APX) is a key enzyme, is an integral part of the plant tolerance response to environmental stresses. As a first step towards the study of the physiological role and the regulation of the members of the Apx gene family, the orthologs of the stre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2008-02, Vol.279 (2), p.171-182
Hauptverfasser: Najami, Naim, Janda, Tibor, Barriah, Waseim, Kayam, Galya, Tal, Moshe, Guy, Micha, Volokita, Micha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The antioxidative response, where ascorbate peroxidase (APX) is a key enzyme, is an integral part of the plant tolerance response to environmental stresses. As a first step towards the study of the physiological role and the regulation of the members of the Apx gene family, the orthologs of the stress-sensitive cultivated tomato Solanum lycopersicum cv. M82 (Slm) and of the wild salt-tolerant species S. pennellii acc. Atico (Spa) were identified by utilizing the tomato EST database, and characterized. A redundant list of 16 virtual Apx transcripts and four singleton ESTs was shown to correspond to seven genuine Apx genes. The complete tomato Apx gene family is comprised of genes encoding three cytosolic, two peroxisomal, and two chloroplastic APXs. These genes attained differential regulatory patterns in various Slm organs. More detailed study of Apx1 and Apx2 genes, that are the products of a recent gene duplication event, shows that they have already attained differential regulation within and between Slm and Spa under control and stress conditions. It is also suggested that due to lineage-specific gene duplication and lose events, intricate phylogenetic relationships exist among the members of the Apx gene families.
ISSN:1617-4615
1617-4623
DOI:10.1007/s00438-007-0305-2