Telomere exchange and asymmetric segregation of chromosomes can account for the unlimited proliferative potential of ALT cell populations
Telomerase-negative cancer cells show increased telomere sister chromatid exchange (T-SCE) rates, a phenomenon that has been associated with an alternative lengthening of telomeres (ALT) mechanism for maintaining telomeres in this subset of cancers. Here we examine whether or not T-SCE can maintain...
Gespeichert in:
Veröffentlicht in: | DNA repair 2008-02, Vol.7 (2), p.199-204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Telomerase-negative cancer cells show increased telomere sister chromatid exchange (T-SCE) rates, a phenomenon that has been associated with an alternative lengthening of telomeres (ALT) mechanism for maintaining telomeres in this subset of cancers. Here we examine whether or not T-SCE can maintain telomeres in human cells using a combinatorial model capable of describing how telomere lengths evolve over time. Our results show that random T-SCE is unlikely to be the mechanism of telomere maintenance of ALT human cells, but that increased T-SCE rates combined with a recently proposed novel mechanism of non-random segregation of chromosomes with long telomeres preferentially into the same daughter cell during cell division can stabilize chromosome ends in ALT cancers. At the end we discuss a possible experiment that can validate the findings of this study. |
---|---|
ISSN: | 1568-7864 1568-7856 |
DOI: | 10.1016/j.dnarep.2007.09.012 |