Sum Frequency Generation from Langmuir−Blodgett Multilayer Films on Metal and Dielectric Substrates

Sum frequency generation (SFG) vibrational spectra of cadmium arachidate multilayer films adsorbed on a substrate with high nonresonant susceptibility, i.e., gold, and on a low nonresonant susceptibility substrate, i.e., fused quartz, have been investigated in the C−H stretching region in air. The f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-10, Vol.109 (40), p.18723-18732
Hauptverfasser: Holman, Jasper, Davies, Paul B, Nishida, Takuma, Ye, Shen, Neivandt, David J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sum frequency generation (SFG) vibrational spectra of cadmium arachidate multilayer films adsorbed on a substrate with high nonresonant susceptibility, i.e., gold, and on a low nonresonant susceptibility substrate, i.e., fused quartz, have been investigated in the C−H stretching region in air. The films were formed by Langmuir−Blodgett (LB) deposition and their spectra recorded using SFG spectrometers employing both 532-nm nanosecond and 800-nm femtosecond lasers, with counter-propagating and co-propagating beam geometries, respectively. Both kinds of substrate were rendered hydrophobic by coating them with per-deuterated octadecanethiol (gold) or per-deuterated cadmium arachidate (fused quartz) monolayers. Single per-protonated arachidate layers in otherwise per-deuterated 10-layer films were used to show that the SFG resonances arise only from the topmost and lowermost layers in a LB film comprised of an even number of per-protonated layers, although the SFG spectra from the two hydrophobic substrates are different from each other. The differences in the spectra from the same ten-layer per-protonated films deposited on the two types of hydrophobic substrate have been explained in terms of a simple model that accounts for resonant and nonresonant contributions.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp051564y