Influence of Surface States on Electron Transport through Intrinsic Ge Nanowires

Solution-grown single-crystal Ge nanowires were used as conductive channels in field effect transistor devices to study the influence of surface states on their electron transport properties. Nanowires contacted with Pt electrodes using focused ion beam metal deposition exhibited linear current−volt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-03, Vol.109 (12), p.5518-5524
Hauptverfasser: Hanrath, Tobias, Korgel, Brian A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solution-grown single-crystal Ge nanowires were used as conductive channels in field effect transistor devices to study the influence of surface states on their electron transport properties. Nanowires contacted with Pt electrodes using focused ion beam metal deposition exhibited linear current−voltage (IV) curves at room temperature with apparent resistivities ranging from 101 to 10-1 Ω cm. In all cases, the nanowire conductance decreased with positive external electric fields applied perpendicular to the nanowire surface by a gate electrode, characteristic of p-type carrier accumulation at the nanowire surface. The field-induced change in conductance exhibited a time-dependent relaxation, with response time and magnitude of current decrease that depended on the nanowire surface chemistry. Nanowires treated with an organic passivation layer using a thermally initiated hydrogermylation reaction exhibited 2 orders of magnitude slower current relaxation and a smaller decrease in current relative to “bare” nanowires with oxidized surfaces.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp044491b