Common and contrasting genomic profiles among the major human lung cancer subtypes

Lung cancer is the leading cause of cancer mortality worldwide. With the recent success of molecularly targeted therapies in this disease, a detailed knowledge of the spectrum of genetic lesions in lung cancer represents a critical step in the development of additional effective agents. An integrate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cold Spring Harbor Symposia on Quantitative Biology 2005, Vol.70, p.11-24
Hauptverfasser: Tonon, G, Brennan, C, Protopopov, A, Maulik, G, Feng, B, Zhang, Y, Khatry, D B, You, M J, Aguirre, A J, Martin, E S, Yang, Z, Ji, H, Chin, L, Wong, K-K, Depinho, R A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lung cancer is the leading cause of cancer mortality worldwide. With the recent success of molecularly targeted therapies in this disease, a detailed knowledge of the spectrum of genetic lesions in lung cancer represents a critical step in the development of additional effective agents. An integrated high-resolution survey of regional amplifications and deletions and gene expression profiling of non-small-cell lung cancers (NSCLC) identified 93 focal high-confidence copy number alterations (CNAs), with 21 spanning less than 0.5 Mb with a median of five genes. Most CNAs were novel and included high-amplitude amplification and homozygous deletion events. Pathogenic relevance of these genomic alterations was further reinforced by their recurrence and overlap with focal alterations of other tumor types. Additionally, the comparison of the genomic profiles of the two major subtypes of NSCLC, adenocarcinoma (AC) and squamous cell carcinoma (SCC), showed an almost complete overlap with the exception of one amplified region on chromosome 3, specific for SCC. Among the few genes overexpressed within this amplicon was p63, a known regulator of squamous cell differentiation. These findings suggest that the AC and SCC subtypes may arise from a common cell of origin and they are driven to their distinct phenotypic end points by altered expression of a limited number of key genes such as p63.
ISSN:0091-7451
1943-4456
DOI:10.1101/sqb.2005.70.021