Hierarchical Multiscale Mechanism Development for Methane Partial Oxidation and Reforming and for Thermal Decomposition of Oxygenates on Rh

A thermodynamically consistent C1 microkinetic model is developed for methane partial oxidation and reforming and for oxygenate (methanol and formaldehyde) decomposition on Rh via a hierarchical multiscale methodology. Sensitivity analysis is employed to identify the important parameters of the semi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-09, Vol.109 (35), p.16819-16835
Hauptverfasser: Mhadeshwar, A. B, Vlachos, D. G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A thermodynamically consistent C1 microkinetic model is developed for methane partial oxidation and reforming and for oxygenate (methanol and formaldehyde) decomposition on Rh via a hierarchical multiscale methodology. Sensitivity analysis is employed to identify the important parameters of the semiempirical unity bond index quadratic exponential potential (UBI-QEP) method and these parameters are refined using quantum mechanical density functional theory. With adjustment of only two pre-exponentials in the CH4 oxidation subset, the C1 mechanism captures a multitude of catalytic partial oxidation (CPOX) and reforming experimental data as well as thermal decomposition of methanol and formaldehyde. We validate the microkinetic model against high-pressure, spatially resolved CPOX experimental data. Distinct oxidation and reforming zones are predicted to exist, in agreement with experiments, suggesting that hydrogen is produced from reforming of methane by H2O formed in the oxidation zone. CO is produced catalytically by partial oxidation up to moderately high pressures, with water-gas shift taking place in the gas-phase at sufficiently high pressures resulting in reduction of CO selectivity.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp052479t