Calculated Structural and Electronic Interactions of the Ruthenium Dye N3 with a Titanium Dioxide Nanocrystal

Structural and electronic properties of a small anatase TiO2 nanocrystal sensitized by the ruthenium dye N3 (Ru(4,4‘-dicarboxy-2,2‘-bipyridine)2(NCS)2) have been investigated using density functional theory (DFT) with support from Hartree−Fock (HF) and time dependent DFT (TD-DFT) calculations. Signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-06, Vol.109 (24), p.11918-11924
Hauptverfasser: Persson, Petter, Lundqvist, Maria J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Structural and electronic properties of a small anatase TiO2 nanocrystal sensitized by the ruthenium dye N3 (Ru(4,4‘-dicarboxy-2,2‘-bipyridine)2(NCS)2) have been investigated using density functional theory (DFT) with support from Hartree−Fock (HF) and time dependent DFT (TD-DFT) calculations. Significant structural adjustments of both the dye and the nanocrystal are predicted to be induced by the strain imposed by the simultaneous formation of multiple dye−surface bonds. Electronic properties of the combined dye−nanocrystal system have also been calculated, including information about interfacial orbital mixing and the lowest excited singlet states. Ultrafast photoinduced electron transfer processes across the dye−nanoparticle interface in dye-sensitized solar cells are finally discussed in view of estimated electronic coupling strengths. The calculations predict injection times on the order of 10 fs for MLCT excitations to the ligand π* levels that interact most strongly with the TiO2 conduction band, and an order of magnitude increase in the injection times for excitations to dye levels with poor spatial or energetic overlaps with the substrate conduction band.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp050513y