Activation Energy of Methyl Radical Decay in Methane Hydrate

The thermal stability of γ-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210−260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-11, Vol.109 (44), p.21086-21088
Hauptverfasser: Takeya, Kei, Nango, Kouhei, Sugahara, Takeshi, Ohgaki, Kazunari, Tani, Atsushi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21088
container_issue 44
container_start_page 21086
container_title The journal of physical chemistry. B
container_volume 109
creator Takeya, Kei
Nango, Kouhei
Sugahara, Takeshi
Ohgaki, Kazunari
Tani, Atsushi
description The thermal stability of γ-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210−260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical decay proceeds by two different temperature-dependent processes, that is, the respective activation energies of these processes are 20.0 ± 1.6 kJ/mol for the lower temperature region of 210−230 K and 54.8 ± 5.7 kJ/mol for the higher temperature region of 235−260 K. The former agrees well with the enthalpy change of methane hydrate dissociation into ice and gaseous methane, while the latter agrees well with the enthalpy change into liquid water and gaseous methane. The present findings reveal that methane hydrates dissociate into liquid (supercooled) water and gaseous methane in the temperature range of 235−260 K.
doi_str_mv 10.1021/jp054028e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70170586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70170586</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-d4be8b897b20ca26db699e5f43f518d2e76486310d9924f9359f8260f5f367ea3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK0e_AOSi4KH6H5kPwJeSlut0KK0Ubwtm2RXU9Ok7iZi_r3RhnrxMMyw-_DO8ABwiuAVghhdrzaQBhALvQf6iGLot8X3u5khyHrgyLkVhJhiwQ5BDzFBCSeoD26GSZV9qiorC29SaPvaeKXx5rp6a3JvodIsUbk31olqvKz4fVeF9qZNalWlj8GBUbnTJ10fgKfbSTSa-rOHu_vRcOarAPHKT4NYi1iEPMYwUZilMQtDTU1ADEUixZqzQDCCYBqGODAhoaERmEFDDWFcKzIAF9vcjS0_au0quc5covO8vaWsneQQcUjbiAG43IKJLZ2z2siNzdbKNhJB-aNK7lS17FkXWsdrnf6RnZsW8LdA5ir9tftX9l0yTjiV0eNSPs8X0XK8jORLy59veZU4uSprW7RO_ln8DUEffVE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70170586</pqid></control><display><type>article</type><title>Activation Energy of Methyl Radical Decay in Methane Hydrate</title><source>ACS Publications</source><creator>Takeya, Kei ; Nango, Kouhei ; Sugahara, Takeshi ; Ohgaki, Kazunari ; Tani, Atsushi</creator><creatorcontrib>Takeya, Kei ; Nango, Kouhei ; Sugahara, Takeshi ; Ohgaki, Kazunari ; Tani, Atsushi</creatorcontrib><description>The thermal stability of γ-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210−260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical decay proceeds by two different temperature-dependent processes, that is, the respective activation energies of these processes are 20.0 ± 1.6 kJ/mol for the lower temperature region of 210−230 K and 54.8 ± 5.7 kJ/mol for the higher temperature region of 235−260 K. The former agrees well with the enthalpy change of methane hydrate dissociation into ice and gaseous methane, while the latter agrees well with the enthalpy change into liquid water and gaseous methane. The present findings reveal that methane hydrates dissociate into liquid (supercooled) water and gaseous methane in the temperature range of 235−260 K.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp054028e</identifier><identifier>PMID: 16853731</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2005-11, Vol.109 (44), p.21086-21088</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-d4be8b897b20ca26db699e5f43f518d2e76486310d9924f9359f8260f5f367ea3</citedby><cites>FETCH-LOGICAL-a417t-d4be8b897b20ca26db699e5f43f518d2e76486310d9924f9359f8260f5f367ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp054028e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp054028e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16853731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Takeya, Kei</creatorcontrib><creatorcontrib>Nango, Kouhei</creatorcontrib><creatorcontrib>Sugahara, Takeshi</creatorcontrib><creatorcontrib>Ohgaki, Kazunari</creatorcontrib><creatorcontrib>Tani, Atsushi</creatorcontrib><title>Activation Energy of Methyl Radical Decay in Methane Hydrate</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The thermal stability of γ-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210−260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical decay proceeds by two different temperature-dependent processes, that is, the respective activation energies of these processes are 20.0 ± 1.6 kJ/mol for the lower temperature region of 210−230 K and 54.8 ± 5.7 kJ/mol for the higher temperature region of 235−260 K. The former agrees well with the enthalpy change of methane hydrate dissociation into ice and gaseous methane, while the latter agrees well with the enthalpy change into liquid water and gaseous methane. The present findings reveal that methane hydrates dissociate into liquid (supercooled) water and gaseous methane in the temperature range of 235−260 K.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRbK0e_AOSi4KH6H5kPwJeSlut0KK0Ubwtm2RXU9Ok7iZi_r3RhnrxMMyw-_DO8ABwiuAVghhdrzaQBhALvQf6iGLot8X3u5khyHrgyLkVhJhiwQ5BDzFBCSeoD26GSZV9qiorC29SaPvaeKXx5rp6a3JvodIsUbk31olqvKz4fVeF9qZNalWlj8GBUbnTJ10fgKfbSTSa-rOHu_vRcOarAPHKT4NYi1iEPMYwUZilMQtDTU1ADEUixZqzQDCCYBqGODAhoaERmEFDDWFcKzIAF9vcjS0_au0quc5covO8vaWsneQQcUjbiAG43IKJLZ2z2siNzdbKNhJB-aNK7lS17FkXWsdrnf6RnZsW8LdA5ir9tftX9l0yTjiV0eNSPs8X0XK8jORLy59veZU4uSprW7RO_ln8DUEffVE</recordid><startdate>20051110</startdate><enddate>20051110</enddate><creator>Takeya, Kei</creator><creator>Nango, Kouhei</creator><creator>Sugahara, Takeshi</creator><creator>Ohgaki, Kazunari</creator><creator>Tani, Atsushi</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051110</creationdate><title>Activation Energy of Methyl Radical Decay in Methane Hydrate</title><author>Takeya, Kei ; Nango, Kouhei ; Sugahara, Takeshi ; Ohgaki, Kazunari ; Tani, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-d4be8b897b20ca26db699e5f43f518d2e76486310d9924f9359f8260f5f367ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeya, Kei</creatorcontrib><creatorcontrib>Nango, Kouhei</creatorcontrib><creatorcontrib>Sugahara, Takeshi</creatorcontrib><creatorcontrib>Ohgaki, Kazunari</creatorcontrib><creatorcontrib>Tani, Atsushi</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeya, Kei</au><au>Nango, Kouhei</au><au>Sugahara, Takeshi</au><au>Ohgaki, Kazunari</au><au>Tani, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Activation Energy of Methyl Radical Decay in Methane Hydrate</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2005-11-10</date><risdate>2005</risdate><volume>109</volume><issue>44</issue><spage>21086</spage><epage>21088</epage><pages>21086-21088</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The thermal stability of γ-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210−260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical decay proceeds by two different temperature-dependent processes, that is, the respective activation energies of these processes are 20.0 ± 1.6 kJ/mol for the lower temperature region of 210−230 K and 54.8 ± 5.7 kJ/mol for the higher temperature region of 235−260 K. The former agrees well with the enthalpy change of methane hydrate dissociation into ice and gaseous methane, while the latter agrees well with the enthalpy change into liquid water and gaseous methane. The present findings reveal that methane hydrates dissociate into liquid (supercooled) water and gaseous methane in the temperature range of 235−260 K.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16853731</pmid><doi>10.1021/jp054028e</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2005-11, Vol.109 (44), p.21086-21088
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_70170586
source ACS Publications
title Activation Energy of Methyl Radical Decay in Methane Hydrate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Activation%20Energy%20of%20Methyl%20Radical%20Decay%20in%20Methane%20Hydrate&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Takeya,%20Kei&rft.date=2005-11-10&rft.volume=109&rft.issue=44&rft.spage=21086&rft.epage=21088&rft.pages=21086-21088&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp054028e&rft_dat=%3Cproquest_cross%3E70170586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70170586&rft_id=info:pmid/16853731&rfr_iscdi=true