Activation Energy of Methyl Radical Decay in Methane Hydrate

The thermal stability of γ-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210−260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-11, Vol.109 (44), p.21086-21088
Hauptverfasser: Takeya, Kei, Nango, Kouhei, Sugahara, Takeshi, Ohgaki, Kazunari, Tani, Atsushi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermal stability of γ-ray-induced methyl radicals in methane hydrate was studied using the ESR method at atmospheric pressure and 210−260 K. The methyl radical decay proceeded with the second-order reaction, and ethane molecules were generated from the dimerization process. The methyl radical decay proceeds by two different temperature-dependent processes, that is, the respective activation energies of these processes are 20.0 ± 1.6 kJ/mol for the lower temperature region of 210−230 K and 54.8 ± 5.7 kJ/mol for the higher temperature region of 235−260 K. The former agrees well with the enthalpy change of methane hydrate dissociation into ice and gaseous methane, while the latter agrees well with the enthalpy change into liquid water and gaseous methane. The present findings reveal that methane hydrates dissociate into liquid (supercooled) water and gaseous methane in the temperature range of 235−260 K.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp054028e