Protein assembly onto patterned microfabricated devices through enzymatic activation of fusion pro-tag

We report a versatile approach for covalent surface-assembly of proteins onto selected electrode patterns of pre-fabricated devices. Our approach is based on electro-assembly of the aminopolysaccharide chitosan scaffold as a stable thin film onto patterned conductive surfaces of the device, which is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2008-02, Vol.99 (3), p.499-507
Hauptverfasser: Lewandowski, Angela T, Yi, Hyunmin, Luo, Xiaolong, Payne, Gregory F, Ghodssi, Reza, Rubloff, Gary W, Bentley, William E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a versatile approach for covalent surface-assembly of proteins onto selected electrode patterns of pre-fabricated devices. Our approach is based on electro-assembly of the aminopolysaccharide chitosan scaffold as a stable thin film onto patterned conductive surfaces of the device, which is followed by covalent assembly of the target protein onto the scaffold surface upon enzymatic activation of the protein's "pro-tag." For our demonstration, the model target protein is green fluorescent protein (GFP) genetically fused with a pentatyrosine pro-tag at its C-terminus, which assembles onto both two-dimensional chips and within fully packaged microfluidic devices in situ and under flow. Our surface-assembly approach enables spatial selectivity and orientational control under mild experimental conditions. We believe that our integrated approach harnessing genetic manipulation, in situ enzymatic activation, and electro-assembly makes it advantageous for a wide variety of bioMEMS and biosensing applications that require facile "biofunctionalization" of microfabricated devices. Biotechnol. Bioeng. 2008;99: 499-507. © 2007 Wiley Periodicals, Inc.
ISSN:0006-3592
1097-0290
DOI:10.1002/bit.21580