Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts

Gold catalysts supported on cerium oxide were prepared by solvated metal atom dispersion (SMAD), by deposition-precipitation (DP), and by coprecipitation (CP) methods and were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-02, Vol.109 (7), p.2821-2827
Hauptverfasser: Venezia, Anna Maria, Pantaleo, Giuseppe, Longo, Alessandro, Di Carlo, Gabriella, Casaletto, Maria Pia, Liotta, F. Leonarda, Deganello, Giulio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gold catalysts supported on cerium oxide were prepared by solvated metal atom dispersion (SMAD), by deposition-precipitation (DP), and by coprecipitation (CP) methods and were characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), and X-ray photoelectron spectroscopy (XPS). The catalytic activity was tested in the CO oxidation reaction. The structural and surface analyses evidenced the presence of a modified ceria phase in the case of the DP sample and the presence of pure ceria and gold metal crystallites in the case of the SMAD and CP samples. The DP sample, after a mild treatment in air at 393 K, exhibited only ionic gold, and it was very active below 273 K. By comparing the activities of the different catalysts, it is suggested that the presence of small gold particles, as obtained by the SMAD technique, is not the main requisite for the achievement of the highest CO conversion. The strong interaction between ionic gold and ceria, by enhancing the ceria surface oxygen reducibility, may determine the particularly high activity.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp045928i