Molecular Orientation of Rhodamine Dyes on Surfaces of Layered Silicates
Films of the layered silicates fluorohectorite (FH) and saponite (Sap) with various rhodamine dyes were prepared. The dyes with acidic as well as large hydrophobic groups in their molecule were not adsorbed on the surface of FH, which was interpreted in terms of high charge density on the surface of...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2005-03, Vol.109 (10), p.4608-4615 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Films of the layered silicates fluorohectorite (FH) and saponite (Sap) with various rhodamine dyes were prepared. The dyes with acidic as well as large hydrophobic groups in their molecule were not adsorbed on the surface of FH, which was interpreted in terms of high charge density on the surface of this silicate. All adsorbed dyes formed similar forms, such as isolated cations and H-type molecular aggregates, which were characterized by different spectral properties. Polarized ultraviolet−visible (UV−vis) spectroscopy was used for the characterization of the molecular orientation of dye chromophores on the silicate surface. The isolated dye cations and species, which absorbed light at the low energy part of the spectra, were only slightly tilted with respect to the plane of the silicate surface. The cations forming H-aggregates and absorbing light at low wavelengths were oriented in a nearly perpendicular fashion. The nearly perpendicular orientation was observed as a strong increase of dichroic ratio with film tilting. The orientation of the cations in H-aggregates depends partially on the structure of the dye molecule, namely, on the type of amino group (primary, secondary, or tertiary) in the dye molecule. The type of amino groups probably plays a role in the suitable orientation of dye cations for effective electrostatic interaction between the cations and the negatively charged siloxane surface. X-ray powder diffraction could not distinguish dye phases of dye monomers and molecular aggregates. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp0470039 |