2‘,7‘-Difluorofluorescein Excited-State Proton Reactions: Correlation between Time-Resolved Emission and Steady-State Fluorescence Intensity
The presence of excited-state buffer-mediated proton exchange reactions influences the steady-state fluorescence signals from dyes in solution. Since biomolecules in general have some chemical groups that can act as proton acceptors/donors and are usually dissolved in buffer solutions which can also...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2005-03, Vol.109 (12), p.2840-2846 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The presence of excited-state buffer-mediated proton exchange reactions influences the steady-state fluorescence signals from dyes in solution. Since biomolecules in general have some chemical groups that can act as proton acceptors/donors and are usually dissolved in buffer solutions which can also behave as appropriate proton acceptors/donors, the excited-state proton exchange reactions may result in distorted steady-state fluorescence signals. In a previous paper (J. Phys. Chem. A 2005, 109, 734−747), we evaluated kinetic and other pertinent parameters for the excited-state proton reactions of the prototropic forms of 2‘,7‘-difluorofluorescein (Oregon Green 488, OG488), recording a fluorescence decay surface at different pH values and acetate buffer concentrations, analyzed by means of global compartmental analysis. In this article we use the rate constants and the corrected pre-exponential factors from the previously recorded fluorescence decay traces to simulate the decay times and associated pre-exponentials at different acetate buffer concentrations and constant pH and compare these theoretically calculated values with new experimental data. We also calculate the steady-state fluorescence intensity vs pH and vs acetate buffer concentration (at constant pH) and compare these calculated emission values with the experimental data previously published. The agreement between the experimental and simulated data is excellent. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/jp044681m |