Alkyl Group as Entropy Reservoir in an MMX Chain Complex, Pt2(n-PenCS2)4I

Heat capacity of halogen-bridged one-dimensional binuclear metal complex (so-called MMX chain) having four n-pentyl groups, Pt2(n-PenCS2)4I, was measured by adiabatic calorimetry. A first-order phase transition was observed at 207.4 K when measurement was made after cooling from room temperature. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-02, Vol.109 (7), p.2956-2961
Hauptverfasser: Saito, Kazuya, Ikeuchi, Satoaki, Nakazawa, Yasuhiro, Sato, Akane, Mitsumi, Minoru, Yamashita, Takami, Toriumi, Koshiro, Sorai, Michio
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat capacity of halogen-bridged one-dimensional binuclear metal complex (so-called MMX chain) having four n-pentyl groups, Pt2(n-PenCS2)4I, was measured by adiabatic calorimetry. A first-order phase transition was observed at 207.4 K when measurement was made after cooling from room temperature. The enthalpy and entropy of transition were determined to be 10.19 kJ mol-1 and 49.1 J K-1 mol-1, respectively. A monotropic phase transition was observed at 324 K on heating, and the entropy of transition was essentially null. The sample once heated above 324 K never returned to the initial phase at room temperature and underwent a higher-order phase transition at 173 K and a first-order phase transition at 220.5 K. The enthalpy and entropy of the first-order phase transition were estimated to be 11.6 kJ mol-1 and 52.4 J K-1 mol-1, respectively. The magnitude of the entropy gain at the phase transition from the initial room-temperature phase to the high-temperature phase at 324 K shows that in Pt2(n-PenCS2)4I a large amount of entropy reserved in alkyl chain is transferred to dithiocarboxylato groups upon the phase transition, as in the cases of Pt2(n-PrCS2)4I and Pt2(n-BuCS2)4I.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp046187o