Coarse Master Equation from Bayesian Analysis of Replica Molecular Dynamics Simulations

We use Bayesian inference to derive the rate coefficients of a coarse master equation from molecular dynamics simulations. Results from multiple short simulation trajectories are used to estimate propagators. A likelihood function constructed as a product of the propagators provides a posterior dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-04, Vol.109 (14), p.6479-6484
Hauptverfasser: Sriraman, Saravanapriyan, Kevrekidis, Ioannis G., Hummer, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use Bayesian inference to derive the rate coefficients of a coarse master equation from molecular dynamics simulations. Results from multiple short simulation trajectories are used to estimate propagators. A likelihood function constructed as a product of the propagators provides a posterior distribution of the free coefficients in the rate matrix determining the Markovian master equation. Extensions to non-Markovian dynamics are discussed, using the trajectory “paths” as observations. The Markovian approach is illustrated for the filling and emptying transitions of short carbon nanotubes dissolved in water. We show that accurate thermodynamic and kinetic properties, such as free energy surfaces and kinetic rate coefficients, can be computed from coarse master equations obtained through Bayesian inference.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp046448u