Immunogenicity of Plasmodium yoelii merozoite surface protein 4/5 produced in transgenic plants

Malaria is a major global health problem for which effective control measures are urgently needed. Considerable effort has been focused on the development of effective vaccines against the causative parasite and protective vaccine trials are now being reported. Due to the relative poverty and lack o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for parasitology 2008-01, Vol.38 (1), p.103-110
Hauptverfasser: Wang, Lina, Webster, Diane E., Campbell, Alison E., Dry, Ian B., Wesselingh, Steve L., Coppel, Ross L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Malaria is a major global health problem for which effective control measures are urgently needed. Considerable effort has been focused on the development of effective vaccines against the causative parasite and protective vaccine trials are now being reported. Due to the relative poverty and lack of infrastructure in malaria-endemic areas, a successful immunisation strategy will depend critically on cheap and scaleable methods of vaccine production, distribution and delivery. One promising technology is transgenic plants, both as a bioreactor for the vaccine-manufacturing process as well as a matrix for oral immunisation. In this study, we investigated the feasibility of using transgenic plants to induce protective immunity against malaria infection using Plasmodium yoelii merozoite surface protein 4/5 (PyMSP4/5) in a mouse model of malaria infection. Our data show that the PyMSP4/5 protein can be produced in plants in a configuration that reacts with protective antibodies. Optimisation of codon usage for the PyMSP4/5 gene resulted in significantly increased antigen expression in plants. PyMSP4/5 protein from the codon-optimised construct accumulated to 0.25% of total soluble protein, a sixfold increase over the native gene sequence. Tobacco-made PyMSP4/5 was able to induce antigen-specific antibodies in mice following parenteral delivery, as well as boost the antibody responses induced by DNA vaccination when delivered parenterally or orally. We believe this is the first report to show that plant-made malaria antigens are immunogenic. However, the antibody levels were not high enough to protect the immunised mice against a lethal challenge with P. yoelii. Further strategies are needed to achieve a protective dose, including improvements to antigen expression levels in plants and strategies to enhance the immunogenicity of the expressed antigen.
ISSN:0020-7519
1879-0135
DOI:10.1016/j.ijpara.2007.06.005