Cell Injury by Electric Forces
: The molecular architecture of biological systems is heavily influenced by the highly polar interactions of water. Thus, macromolecules such as proteins that are highly water soluble must be electrically polar. Energy generation methods needed to support cell metabolic processes depend on compartme...
Gespeichert in:
Veröffentlicht in: | Annals of the New York Academy of Sciences 2006-03, Vol.1066 (1), p.85-91 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | : The molecular architecture of biological systems is heavily influenced by the highly polar interactions of water. Thus, macromolecules such as proteins that are highly water soluble must be electrically polar. Energy generation methods needed to support cell metabolic processes depend on compartmentalizing mobile ions and thus require electrical ion transport barriers such as membranes. One consequence of these biological design constraints is vulnerability to injury by electrical forces. Supraphysiological electric forces cause damage to cells and tissues by disrupting cell membranes and altering the conformation of biomolecules. In addition, prolonged passage of electrical current leads to damage by thermal mechanisms. This review will focus on the non‐thermal effects. |
---|---|
ISSN: | 0077-8923 1749-6632 |
DOI: | 10.1196/annals.1363.007 |