Compression and free expansion of single DNA molecules in nanochannels
We investigated compression and ensuing expansion of long DNA molecules confined in nanochannels. Transverse confinement of DNA molecules in the nanofluidic channels leads to elongation of their unconstrained equilibrium configuration. The extended molecules were compressed by electrophoretically dr...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2005-12, Vol.95 (26), p.268101.1-268101.4, Article 268101 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated compression and ensuing expansion of long DNA molecules confined in nanochannels. Transverse confinement of DNA molecules in the nanofluidic channels leads to elongation of their unconstrained equilibrium configuration. The extended molecules were compressed by electrophoretically driving them into porelike constrictions inside the nanochannels. When the electric field was turned off, the DNA strands expanded. This expansion, the dynamics of which has not previously been observable in artificial systems, is explained by a model that is a variation of de Gennes's polymer model. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.95.268101 |