Compression and free expansion of single DNA molecules in nanochannels

We investigated compression and ensuing expansion of long DNA molecules confined in nanochannels. Transverse confinement of DNA molecules in the nanofluidic channels leads to elongation of their unconstrained equilibrium configuration. The extended molecules were compressed by electrophoretically dr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2005-12, Vol.95 (26), p.268101.1-268101.4, Article 268101
Hauptverfasser: RECCIUS, Christian Hermann, MANNION, John Thomas, CROSS, Joshua David, CRAIGHEAD, H. G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated compression and ensuing expansion of long DNA molecules confined in nanochannels. Transverse confinement of DNA molecules in the nanofluidic channels leads to elongation of their unconstrained equilibrium configuration. The extended molecules were compressed by electrophoretically driving them into porelike constrictions inside the nanochannels. When the electric field was turned off, the DNA strands expanded. This expansion, the dynamics of which has not previously been observable in artificial systems, is explained by a model that is a variation of de Gennes's polymer model.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.95.268101