Expression of nine-banded armadillo ( Dasypus novemcinctus) interleukin-2 in E. coli

The nine-banded armadillo ( Dasypus novemcinctus) is the only immunologically intact animal that regularly develops lepromatous-type leprosy when inoculated with Mycobacterium leprae. However, the ability to exploit this model for understanding the pathogenesis of leprosy has been limited by a lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytokine (Philadelphia, Pa.) Pa.), 2005-12, Vol.32 (5), p.219-225
Hauptverfasser: Adams, J.E., Peña, M.T., Gillis, T.P., Williams, D.L., Adams, L.B., Truman, R.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nine-banded armadillo ( Dasypus novemcinctus) is the only immunologically intact animal that regularly develops lepromatous-type leprosy when inoculated with Mycobacterium leprae. However, the ability to exploit this model for understanding the pathogenesis of leprosy has been limited by a lack of suitable immunological reagents. Recently, efforts began to sequence the entire armadillo genome, and this sequence information will help make possible the development of a wide array of new immunological reagents suitable for use with armadillos. Using the available sequence data, a region of high homology to interleukin-2 of other mammals was identified. Primers were designed to amplify the coding region corresponding to the mature peptide and its exact sequence was confirmed. cDNA was made from ConA-stimulated armadillo PBMC. The amplified coding region was sub-cloned into a pET expression vector and transformed into Escherichia coli for over-expression. The subsequent product was characterized by SDS-PAGE and bioassays. Tritiated thymidine incorporation by CTLL-2 and armadillo lymphoblasts confirmed functionality of the recombinant product. The advent of the D. novemcinctus genome sequence and subsequent generation of immunological tools will assist in advancing the armadillo as a translational model for leprosy.
ISSN:1043-4666
1096-0023
DOI:10.1016/j.cyto.2005.09.011