Regimes of terminal motion of sliding spinning disks
Analysis of the frictional motion of a uniform circular disk of radius sliding and spinning on a horizontal table reported by Farkas et al. [Phys. Rev. Lett. 90, 248302 2003] shows that the disk always stops sliding and spinning at the same instant with a terminal speed ratio epsilon = v/Romega = 0....
Gespeichert in:
Veröffentlicht in: | Physical review letters 2005-12, Vol.95 (26), p.264303.1-264303.4, Article 264303 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Analysis of the frictional motion of a uniform circular disk of radius sliding and spinning on a horizontal table reported by Farkas et al. [Phys. Rev. Lett. 90, 248302 2003] shows that the disk always stops sliding and spinning at the same instant with a terminal speed ratio epsilon = v/Romega = 0.653. We show that different terminal behaviors can be found when one considers the motion of a two-tier disk with lower section thickness H(1) and radius R(1), and upper section thickness H(2) and radius H(3). The terminal motion may be analyzed in terms of the normalized radius of gyration k. It is found that while translation and rotation cease simultaneously, their terminal ratio epsilon(0) either vanishes when k > sq.root(2/3), is a nonzero constant when k < 1/2 < k < sq.rt (2/3), or diverges when k < 1/2. Experiments performed with plastic disks sliding on a nylon fabric stretched over a horizontal plate qualitatively corroborate the three different types of terminal motion. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.95.264303 |