Role of hyperinsulinemia on hepatic insulin receptor concentration and autophosphorylation in the presence of high growth hormone levels in transgenic mice overexpressing growth hormone gene

Overexpression of bovine growth hormone (bGH) in transgenic (PEPCK-bGH) mice induces resistance to insulin, which is compensated by a major increase in insulin levels. In these animals, hepatic insulin receptors (InsRs) are downregulated while tyrosine kinase activity of wheat germ agglutinin (WGA)-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of endocrinology 1998-10, Vol.159 (1), p.15-25
Hauptverfasser: Dominici, FP, Balbis, A, Bartke, A, Turyn, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Overexpression of bovine growth hormone (bGH) in transgenic (PEPCK-bGH) mice induces resistance to insulin, which is compensated by a major increase in insulin levels. In these animals, hepatic insulin receptors (InsRs) are downregulated while tyrosine kinase activity of wheat germ agglutinin (WGA)-purified InsRs towards exogenous substrates is unexpectedly increased. By normalizing insulinemia, we attempted to determine whether the alterations detected in the early steps of insulin signal transduction are due to exposure to chronically high GH levels or are secondary to hyperinsulinemia. Transgenic PEPCK-bGH animals were treated with a single intraperitoneal administration of streptozotocin (STZ) or were deprived of food for 48 h, to normalize insulin levels. Both fasting and STZ treatment were effective in reducing insulin blood levels to control values or below, while GH levels remained unchanged (STZ treatment) or increased (fasted animals). In the liver of untreated transgenic mice, the number of InsRs as determined by 125I-insulin binding was significantly diminished (65+/-5% and 60+/-6% of normal values in microsomes and solubilized membranes respectively;P
ISSN:0022-0795
1479-6805
DOI:10.1677/joe.0.1590015