Differential Gene Expression between Sensory Neocortical Areas: Potential Roles for Ten_m3 and Bcl6 in Patterning Visual and Somatosensory Pathways

Adult neocortical areas are characterized by marked differences in cytoarchitecture and connectivity that underlie their functional roles. The molecular determinants of these differences are largely unknown. We performed a microarray analysis to identify molecules that define the somatosensory and v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2008-01, Vol.18 (1), p.53-66
Hauptverfasser: Leamey, Catherine A., Glendining, Kelly A., Kreiman, Gabriel, Kang, Ning-Dong, Wang, Kuan H., Fassler, Reinhard, Sawatari, Atomu, Tonegawa, Susumu, Sur, Mriganka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adult neocortical areas are characterized by marked differences in cytoarchitecture and connectivity that underlie their functional roles. The molecular determinants of these differences are largely unknown. We performed a microarray analysis to identify molecules that define the somatosensory and visual areas during the time when afferent and efferent projections are forming. We identified 122 molecules that are differentially expressed between the regions and confirmed by quantitative polymerase chain reaction 95% of the 20 genes tested. Two genes were chosen for further investigation: Bcl6 and Ten_m3. Bcl6 was highly expressed in the superficial cortical plate corresponding to developing layer IV of somatosensory cortex at postnatal day (P) 0. This had diminished by P3, but strong expression was found in layer V pyramidal cells by P7 and was maintained until adulthood. Retrograde tracing showed that Bcl6 is expressed in corticospinal neurons. Ten_m3 was expressed in a graded pattern within layer V of caudal cortex that corresponds well with visual cortex. Retrograde tracing and immunostaining showed that Ten_m3 is highly expressed along axonal tracts of projection neurons of the developing visual pathway. Overexpression demonstrated that Ten_m3 promotes homophilic adhesion and neurite outgrowth in vivo. This suggests an important role for Ten_m3 in the development of the visual pathway.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhm031