Three-dimensional profiles: a new tool to identify protein surface similarities

We report a procedure for the description and comparison of protein surfaces, which is based on a three-dimensional (3D) transposition of the profile method for sensitive protein homology sequence searches. Although the principle of the method can be applied to detect similarities to a single protei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 1998-12, Vol.284 (4), p.1211-1221
Hauptverfasser: de Rinaldis, Manuel, Ausiello, Gabriele, Cesareni, Gianni, Helmer-Citterich, Manuela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a procedure for the description and comparison of protein surfaces, which is based on a three-dimensional (3D) transposition of the profile method for sensitive protein homology sequence searches. Although the principle of the method can be applied to detect similarities to a single protein surface, the possibility of extending this approach to protein families displaying common structural and/or functional properties, makes it a more powerful tool. In analogy to profiles derived from the multiple alignment of protein sequences, we derive a 3D surface profile from a protein structure or from a multiple structure alignment of several proteins. The 3D profile is used to screen the protein structure database, searching for similar protein surfaces. The application of the procedure to SH2 and SH3 binding pockets and to the nucleotide binding pocket associated with the p-loop structural motif is described. The SH2 and SH3 3D profiles can identify all the SH2 and SH3 binding regions present in the test dataset; the p-loop 3D profile is able to recognize all the p-loop-containing proteins present in the test dataset. Analysis of the p-loop 3D profile allowed the identification of a positive charge whose position is conserved in space but not in sequence. The best ranking non-p-loop-containing protein is an ADP-forming succinyl coenzyme A synthetase, whose nucleotide-binding region has not yet been identified.
ISSN:0022-2836
1089-8638
DOI:10.1006/jmbi.1998.2248