Cardioprotective actions of KC 12291. II. Delaying Na+ overload in ischemia improves cardiac function and energy status in reperfusion

The novel blocker of voltage-gated Na+ channels KC 12291 (1-(5-phenyl-1,2,4-thiadiazol-3-yl-oxypropyl)-3-[N-methyl-N- [2-(3,4-dimethoxyphenyl)ethyl] amino] propane hydrochloride) delays myocardial Na+ overload in ischemia. To test whether KC 12291 displays cardioprotective properties in the intact h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naunyn-Schmiedeberg's archives of pharmacology 1998-11, Vol.358 (5), p.554-560
Hauptverfasser: Hartmann, M, Decking, U K, Schrader, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The novel blocker of voltage-gated Na+ channels KC 12291 (1-(5-phenyl-1,2,4-thiadiazol-3-yl-oxypropyl)-3-[N-methyl-N- [2-(3,4-dimethoxyphenyl)ethyl] amino] propane hydrochloride) delays myocardial Na+ overload in ischemia. To test whether KC 12291 displays cardioprotective properties in the intact heart, cardiac function, energy status and intracellular pH (31P NMR) as well as ion homeostasis (23Na NMR) were investigated during low-flow ischemia (100 microl/min for 36 min) followed by reperfusion. In the well-oxygenated, isolated perfused guinea pig heart, KC 12291 (1 microM) had no effect on left ventricular developed pressure (LVDP; 54+/-19 mmHg). KC 12291 delayed the onset and decreased the extent of ischemic contracture and markedly improved the recovery of LVDP in reperfusion [39+/-14 mmHg (n=4) vs 2+/-2 mmHg in controls (n=5)]. KC 12291 did not influence the rapid drop in phosphocreatine (PCr) following onset of ischemia but attenuated the decline in ATP. It also diminished the ischemia-induced fall in intracellular pH [6.39+/-0.2 (n=6) vs 6.18+/-0.20 in controls (n=6)]. In reperfusion, KC 12291 remarkably enhanced the recovery of PCr (84.8+/-9.6% vs 51.1+/-8.8% of baseline) and ATP (38.2+/-12.9% vs 23.7+/-9.3% of baseline). It also accelerated the recovery of intracellular pH. KC 12291 not only reduced the extent of ischemia-induced Na+ overload, but also enhanced Na+ recovery. It is concluded that KC 12291 delays contracture and reduces ATP depletion and acidosis in ischemia, and markedly improves the functional, energetic and ionic recovery in reperfusion. Blocking voltage-gated Na+ channels in ischemia to delay Na+ overload may thus constitute a promising therapeutic approach for cardioprotection.
ISSN:0028-1298
DOI:10.1007/PL00005292