Development of lipid particles targeted via sugar–lipid conjugates as novel nuclear gene delivery system

Abstract Efficient nuclear gene delivery is essential for successful gene therapy. This study developed a novel system that mimics the mechanism of nuclear entry of adenovirus (Ad) by means of a Multifunctional Envelope-type Nano Device (MEND). In this system, plasmid DNA (pDNA) was condensed with p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2008-02, Vol.29 (6), p.709-723
Hauptverfasser: Masuda, Tomoya, Akita, Hidetaka, Nishio, Takashi, Niikura, Kenichi, Kogure, Kentaro, Ijiro, Kuniharu, Harashima, Hideyoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Efficient nuclear gene delivery is essential for successful gene therapy. This study developed a novel system that mimics the mechanism of nuclear entry of adenovirus (Ad) by means of a Multifunctional Envelope-type Nano Device (MEND). In this system, plasmid DNA (pDNA) was condensed with polycation, followed by encapsulation in a lipid membrane. To target MEND to the nuclear pore complex (NPC), sugar served as a NPC-mediated nuclear targeting device was modified on the surface of the lipid envelope. This was accomplished via synthesis of a sugar–cholesterol conjugate. After binding of the MEND to the NPC, the pDNA core was transferred into the nucleus in conjunction with a breakdown of the lipid envelope. Sugar-modified MEND showed higher transfection efficiency compared with unmodified MEND, in non-dividing and dividing cells. Confocal microscopy confirmed that nuclear transfer of pDNA was improved by sugar modification of MEND. Furthermore, destabilization of the lipid envelope significantly enhanced transfection activity: therefore, nuclear-delivery efficiency was closely related to lipid envelope stability. Moreover, quantitative evaluation of cellular uptake and nuclear transfer processes by real-time PCR confirmed that the surface sugars affected nuclear transfer, but not cellular uptake. In summary, a novel system for the nuclear delivery of pDNA was successfully developed by using a sugar-modified MEND and by optimizing the lipid envelope stability.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2007.09.039