Metabolism of dexfenfluramine in human liver microsomes and by recombinant enzymes : role of CYP2D6 and 1A2

Dexfenfluramine has been widely used as an appetite suppressant in the treatment of obesity. It was recently shown that the apparent non-renal clearance of dexfenfluramine was significantly lower in poor metabolizers than in extensive metabolisers of debrisoquine which suggested the involvement of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacogenetics (London) 1998-10, Vol.8 (5), p.423-432
Hauptverfasser: HARITOS, V. S, CHING, M. S, GHABRIAL, H, GROSS, A. S, TAAVITSAINEN, P, PELKONEN, O, BATTAGLIA, S. E, SMALLWOOD, R. A, AHOKAS, J. T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dexfenfluramine has been widely used as an appetite suppressant in the treatment of obesity. It was recently shown that the apparent non-renal clearance of dexfenfluramine was significantly lower in poor metabolizers than in extensive metabolisers of debrisoquine which suggested the involvement of the polymorphically expressed enzyme, CYP2D6, in dexfenfluramine metabolism. In this study, human liver microsomes and yeast-expressed recombinant enzymes were used to examine dexfenfluramine metabolism in vitro. In human liver microsomes, the major product of dexfenfluramine was nordexfenfluramine with lesser amounts of a novel metabolite, N-hydroxynordexfenfluramine, and ketone and alcohol derivatives being formed. Eadie-Hofstee plots (v against v/[s]) of nordexfenfluramine formation between 1 and 1000 microM substrate concentration were biphasic in three of four liver microsome samples examined, with mean Km values of 3 and 569 microM for the high and low affinity enzymes, respectively. At a substrate concentration (0.5 microM) around the known therapeutic plasma concentration, there was negligible inhibition of microsomal dexfenfluramine N-dealkylation by sulphaphenazole and ketoconazole, but between 33 and 100% inhibition by quinidine, and 0-58% inhibition by 7,8-naphthoflavone in seven liver samples. In human liver microsomes, there was also a significant correlation (rs= 0.79, n = 10, P < 0.01) between dextromethorphan O-demethylation and dexfenfluramine (at 1 microM) N-dealkylation activities. Dexfenfluramine was a specific inhibitor (IC50 46 microM) of CYP2D6-mediated dextromethorphan O-demethylation in human liver microsomes but did not appreciably inhibit six other cytochrome P450 isoform-selective activities for CYP1A2, 2A6, 2C9, 2C19, 2E1 and 3A activities in human liver microsomes. Yeast-expressed recombinant human CYP2D6 metabolized dexfenfluramine with high affinity (Km 1.6 microM, Vmax 0.18 nmol min(-1) nmol P450(-1)) to nordexfenfluramine which was the sole product observed. Recombinant CYP1A2 was a lower affinity enzyme (Km 301 microM, Vmax 1.12 nmol min(-1) nmol P450(-1)) and produced nordexfenfluramine with small amounts of N-hydroxynordexfenfluramine. This is the first detailed study to examine the in-vitro metabolism of dexfenfluramine in human liver microsomes and by recombinant human P450s. We were able to identify CYP2D6 (high affinity) and CYP1A2 (low affinity) as the major enzymes catalysing the N-dealkylation of dexfenfluramine in hum
ISSN:0960-314X
DOI:10.1097/00008571-199810000-00007