Cortical areas with enhanced activation during object-centred spatial information processing : A PET study

The phenomenon of object-centred unilateral neglect suggests that some neural networks process spatial information relative to reference objects. To examine object-centred information processing, we measured regional cerebral blood flow in 11 normal subjects with PET. During each PET scan, a subject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain (London, England : 1878) England : 1878), 1998-11, Vol.121 (11), p.2145-2158
Hauptverfasser: HONDA, M, WISE, S. P, WEEKS, R. A, DEIBER, M.-P, HALLETT, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phenomenon of object-centred unilateral neglect suggests that some neural networks process spatial information relative to reference objects. To examine object-centred information processing, we measured regional cerebral blood flow in 11 normal subjects with PET. During each PET scan, a subject viewed a sample stimulus followed by a cue on a video screen. The sample consisted of two polygons, termed 'objects', each located in a corner of the screen. A small target spot appeared in a corner of each polygon. There were two tasks: the visuomotor task and the matching-to-sample task. In the visuomotor task, the subject moved a joystick in a direction indicated by either the location of the target spot inside the object (if object-centred coordinates were operative) or the location of the object relative to the video screen (if screen-centred coordinates were operative). In the matching-to-sample task, the subject moved the joystick to report whether the relevant spatial information (object- or screen-centred) in the cue matched the sample. In both the visuomotor and the matching-to-sample task, use of object-centred (versus screen- or viewer-centred) information caused augmented activation in the inferior occipitotemporal cortex, bilaterally, in the left superior occipital gyrus, and in both the thalamus and the brainstem. In addition, in the visuomotor task such activation occurred in the right posterior parietal cortex and in the left ventral premotor, dorsolateral prefrontal and anterior supplementary motor areas. These findings suggest the involvement of the occipitotemporal cortex and a broad frontoparietal network when, as in the visuomotor task, object-centred information guides movement. When the same data underlie declarative reports, as in the matching-to-sample task, the occipitotemporal cortex remains engaged but the frontoparietal network diminishes in importance.
ISSN:0006-8950
1460-2156
1460-2156
DOI:10.1093/brain/121.11.2145