Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance
The accumulation of compatible solutes is often regarded as a basic strategy for the protection and survival of plants under abiotic stress conditions, including both salinity and oxidative stress. In this work, a possible causal link between the ability of contrasting barley genotypes to accumulate...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2007-01, Vol.58 (15-16), p.4245-4255 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The accumulation of compatible solutes is often regarded as a basic strategy for the protection and survival of plants under abiotic stress conditions, including both salinity and oxidative stress. In this work, a possible causal link between the ability of contrasting barley genotypes to accumulate/synthesize compatible solutes and their salinity stress tolerance was investigated. The impact of H2O2 (one of the components of salt stress) on K+ flux (a measure of stress 'severity') and the mitigating effects of glycine betaine and proline on NaCl-induced K+ efflux were found to be significantly higher in salt-sensitive barley genotypes. At the same time, a 2-fold higher accumulation of leaf and root proline and leaf glycine betaine was found in salt-sensitive cultivars. The total amino acid content was also less affected by salinity in salt-tolerant cultivars. In these, potassium was found to be the main contributor to cytoplasmic osmolality, while in salt-sensitive genotypes, glycine betaine and proline contributed substantially to cell osmolality, compensating for reduced cytosolic K+. Significant negative correlations (r= -0.89 and -0.94) were observed between Na+-induced K+ efflux (an indicator of salt tolerance) and leaf glycine betaine and proline. These results indicate that hyperaccumulation of known major compatible solutes in barley does not appear to play a major role in salt-tolerance, but rather, may be a symptom of salt-susceptibility. |
---|---|
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/erm284 |