A comparison of statistical learning methods on the GUSTO database
We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a re...
Gespeichert in:
Veröffentlicht in: | Statistics in medicine 1998-11, Vol.17 (21), p.2501-2508 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2508 |
---|---|
container_issue | 21 |
container_start_page | 2501 |
container_title | Statistics in medicine |
container_volume | 17 |
creator | Ennis, Marguerite Hinton, Geoffrey Naylor, David Revow, Mike Tibshirani, Robert |
description | We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a relatively simple logistic regression model previously developed for this problem. © 1998 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/(SICI)1097-0258(19981115)17:21<2501::AID-SIM938>3.0.CO;2-M |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70054622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70054622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5238-ce0cc17a34def3e1c7d9886b6ea3c2bc73508ec244bf156feae3070112c0550f3</originalsourceid><addsrcrecordid>eNqNkV1v0zAUhi0EGmXwE5BygdB2kXJsx3FSEFIXaBdppRfdNGlCOnIchwXyUeJUsH-Po4TejAuujnTO60evHhNyQWFOAdi7s12apOcUYukDE9EZjeOIUirOqVww-oEJoIvFMv3k79JNzKOPfA7zZPue-ZsnZHZ89pTMgEnph5KK5-SFtd8BHITJE3LieHEU0Bm5WHq6rfeqK23beG3h2V71pe1LrSqvMqpryuabV5v-vs2t5yL9vfHWN7vrrZerXmXKmpfkWaEqa15N85TcrD5fJ5f-1XadJssrXwvGI18b0JpKxYPcFNxQLfM4isIsNIprlmnJBURGsyDICirCwijDQbrGTIMQUPBT8nbk7rv258HYHuvSalNVqjHtwaIEEEHImAvejUHdtdZ2psB9V9aqe0AKOAhGHATjYAoHU_hXMFKJjOIgGNEJxlEwcgRMtshw4-CvpxaHrDb5ET0Zdfc3011Z57DoVKNLe4yxgIdAIxf7OsZ-lZV5eFTwP_r9s960cXh_xLuvNL-PeNX9wFByKfD2yxojvr5brRzvlv8BeQ-ycg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70054622</pqid></control><display><type>article</type><title>A comparison of statistical learning methods on the GUSTO database</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Ennis, Marguerite ; Hinton, Geoffrey ; Naylor, David ; Revow, Mike ; Tibshirani, Robert</creator><creatorcontrib>Ennis, Marguerite ; Hinton, Geoffrey ; Naylor, David ; Revow, Mike ; Tibshirani, Robert</creatorcontrib><description>We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a relatively simple logistic regression model previously developed for this problem. © 1998 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/(SICI)1097-0258(19981115)17:21<2501::AID-SIM938>3.0.CO;2-M</identifier><identifier>PMID: 9819841</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Databases as Topic ; Humans ; Logistic Models ; Medical sciences ; Medical statistics ; Myocardial Infarction - drug therapy ; Myocardial Infarction - mortality ; Neural Networks (Computer) ; Risk Factors ; Survival Rate ; Thrombolytic Therapy</subject><ispartof>Statistics in medicine, 1998-11, Vol.17 (21), p.2501-2508</ispartof><rights>Copyright © 1998 John Wiley & Sons, Ltd.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0258%2819981115%2917%3A21%3C2501%3A%3AAID-SIM938%3E3.0.CO%3B2-M$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0258%2819981115%2917%3A21%3C2501%3A%3AAID-SIM938%3E3.0.CO%3B2-M$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2436018$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9819841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ennis, Marguerite</creatorcontrib><creatorcontrib>Hinton, Geoffrey</creatorcontrib><creatorcontrib>Naylor, David</creatorcontrib><creatorcontrib>Revow, Mike</creatorcontrib><creatorcontrib>Tibshirani, Robert</creatorcontrib><title>A comparison of statistical learning methods on the GUSTO database</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a relatively simple logistic regression model previously developed for this problem. © 1998 John Wiley & Sons, Ltd.</description><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Databases as Topic</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Myocardial Infarction - drug therapy</subject><subject>Myocardial Infarction - mortality</subject><subject>Neural Networks (Computer)</subject><subject>Risk Factors</subject><subject>Survival Rate</subject><subject>Thrombolytic Therapy</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1v0zAUhi0EGmXwE5BygdB2kXJsx3FSEFIXaBdppRfdNGlCOnIchwXyUeJUsH-Po4TejAuujnTO60evHhNyQWFOAdi7s12apOcUYukDE9EZjeOIUirOqVww-oEJoIvFMv3k79JNzKOPfA7zZPue-ZsnZHZ89pTMgEnph5KK5-SFtd8BHITJE3LieHEU0Bm5WHq6rfeqK23beG3h2V71pe1LrSqvMqpryuabV5v-vs2t5yL9vfHWN7vrrZerXmXKmpfkWaEqa15N85TcrD5fJ5f-1XadJssrXwvGI18b0JpKxYPcFNxQLfM4isIsNIprlmnJBURGsyDICirCwijDQbrGTIMQUPBT8nbk7rv258HYHuvSalNVqjHtwaIEEEHImAvejUHdtdZ2psB9V9aqe0AKOAhGHATjYAoHU_hXMFKJjOIgGNEJxlEwcgRMtshw4-CvpxaHrDb5ET0Zdfc3011Z57DoVKNLe4yxgIdAIxf7OsZ-lZV5eFTwP_r9s960cXh_xLuvNL-PeNX9wFByKfD2yxojvr5brRzvlv8BeQ-ycg</recordid><startdate>19981115</startdate><enddate>19981115</enddate><creator>Ennis, Marguerite</creator><creator>Hinton, Geoffrey</creator><creator>Naylor, David</creator><creator>Revow, Mike</creator><creator>Tibshirani, Robert</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981115</creationdate><title>A comparison of statistical learning methods on the GUSTO database</title><author>Ennis, Marguerite ; Hinton, Geoffrey ; Naylor, David ; Revow, Mike ; Tibshirani, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5238-ce0cc17a34def3e1c7d9886b6ea3c2bc73508ec244bf156feae3070112c0550f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Databases as Topic</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Myocardial Infarction - drug therapy</topic><topic>Myocardial Infarction - mortality</topic><topic>Neural Networks (Computer)</topic><topic>Risk Factors</topic><topic>Survival Rate</topic><topic>Thrombolytic Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ennis, Marguerite</creatorcontrib><creatorcontrib>Hinton, Geoffrey</creatorcontrib><creatorcontrib>Naylor, David</creatorcontrib><creatorcontrib>Revow, Mike</creatorcontrib><creatorcontrib>Tibshirani, Robert</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ennis, Marguerite</au><au>Hinton, Geoffrey</au><au>Naylor, David</au><au>Revow, Mike</au><au>Tibshirani, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of statistical learning methods on the GUSTO database</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>1998-11-15</date><risdate>1998</risdate><volume>17</volume><issue>21</issue><spage>2501</spage><epage>2508</epage><pages>2501-2508</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a relatively simple logistic regression model previously developed for this problem. © 1998 John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>9819841</pmid><doi>10.1002/(SICI)1097-0258(19981115)17:21<2501::AID-SIM938>3.0.CO;2-M</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 1998-11, Vol.17 (21), p.2501-2508 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_70054622 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Biological and medical sciences Computerized, statistical medical data processing and models in biomedicine Databases as Topic Humans Logistic Models Medical sciences Medical statistics Myocardial Infarction - drug therapy Myocardial Infarction - mortality Neural Networks (Computer) Risk Factors Survival Rate Thrombolytic Therapy |
title | A comparison of statistical learning methods on the GUSTO database |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20statistical%20learning%20methods%20on%20the%20GUSTO%20database&rft.jtitle=Statistics%20in%20medicine&rft.au=Ennis,%20Marguerite&rft.date=1998-11-15&rft.volume=17&rft.issue=21&rft.spage=2501&rft.epage=2508&rft.pages=2501-2508&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/(SICI)1097-0258(19981115)17:21%3C2501::AID-SIM938%3E3.0.CO;2-M&rft_dat=%3Cproquest_cross%3E70054622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70054622&rft_id=info:pmid/9819841&rfr_iscdi=true |