A comparison of statistical learning methods on the GUSTO database

We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 1998-11, Vol.17 (21), p.2501-2508
Hauptverfasser: Ennis, Marguerite, Hinton, Geoffrey, Naylor, David, Revow, Mike, Tibshirani, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2508
container_issue 21
container_start_page 2501
container_title Statistics in medicine
container_volume 17
creator Ennis, Marguerite
Hinton, Geoffrey
Naylor, David
Revow, Mike
Tibshirani, Robert
description We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a relatively simple logistic regression model previously developed for this problem. © 1998 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1097-0258(19981115)17:21<2501::AID-SIM938>3.0.CO;2-M
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70054622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70054622</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5238-ce0cc17a34def3e1c7d9886b6ea3c2bc73508ec244bf156feae3070112c0550f3</originalsourceid><addsrcrecordid>eNqNkV1v0zAUhi0EGmXwE5BygdB2kXJsx3FSEFIXaBdppRfdNGlCOnIchwXyUeJUsH-Po4TejAuujnTO60evHhNyQWFOAdi7s12apOcUYukDE9EZjeOIUirOqVww-oEJoIvFMv3k79JNzKOPfA7zZPue-ZsnZHZ89pTMgEnph5KK5-SFtd8BHITJE3LieHEU0Bm5WHq6rfeqK23beG3h2V71pe1LrSqvMqpryuabV5v-vs2t5yL9vfHWN7vrrZerXmXKmpfkWaEqa15N85TcrD5fJ5f-1XadJssrXwvGI18b0JpKxYPcFNxQLfM4isIsNIprlmnJBURGsyDICirCwijDQbrGTIMQUPBT8nbk7rv258HYHuvSalNVqjHtwaIEEEHImAvejUHdtdZ2psB9V9aqe0AKOAhGHATjYAoHU_hXMFKJjOIgGNEJxlEwcgRMtshw4-CvpxaHrDb5ET0Zdfc3011Z57DoVKNLe4yxgIdAIxf7OsZ-lZV5eFTwP_r9s960cXh_xLuvNL-PeNX9wFByKfD2yxojvr5brRzvlv8BeQ-ycg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70054622</pqid></control><display><type>article</type><title>A comparison of statistical learning methods on the GUSTO database</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Ennis, Marguerite ; Hinton, Geoffrey ; Naylor, David ; Revow, Mike ; Tibshirani, Robert</creator><creatorcontrib>Ennis, Marguerite ; Hinton, Geoffrey ; Naylor, David ; Revow, Mike ; Tibshirani, Robert</creatorcontrib><description>We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a relatively simple logistic regression model previously developed for this problem. © 1998 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/(SICI)1097-0258(19981115)17:21&lt;2501::AID-SIM938&gt;3.0.CO;2-M</identifier><identifier>PMID: 9819841</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Biological and medical sciences ; Computerized, statistical medical data processing and models in biomedicine ; Databases as Topic ; Humans ; Logistic Models ; Medical sciences ; Medical statistics ; Myocardial Infarction - drug therapy ; Myocardial Infarction - mortality ; Neural Networks (Computer) ; Risk Factors ; Survival Rate ; Thrombolytic Therapy</subject><ispartof>Statistics in medicine, 1998-11, Vol.17 (21), p.2501-2508</ispartof><rights>Copyright © 1998 John Wiley &amp; Sons, Ltd.</rights><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0258%2819981115%2917%3A21%3C2501%3A%3AAID-SIM938%3E3.0.CO%3B2-M$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0258%2819981115%2917%3A21%3C2501%3A%3AAID-SIM938%3E3.0.CO%3B2-M$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2436018$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9819841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ennis, Marguerite</creatorcontrib><creatorcontrib>Hinton, Geoffrey</creatorcontrib><creatorcontrib>Naylor, David</creatorcontrib><creatorcontrib>Revow, Mike</creatorcontrib><creatorcontrib>Tibshirani, Robert</creatorcontrib><title>A comparison of statistical learning methods on the GUSTO database</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a relatively simple logistic regression model previously developed for this problem. © 1998 John Wiley &amp; Sons, Ltd.</description><subject>Biological and medical sciences</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Databases as Topic</subject><subject>Humans</subject><subject>Logistic Models</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Myocardial Infarction - drug therapy</subject><subject>Myocardial Infarction - mortality</subject><subject>Neural Networks (Computer)</subject><subject>Risk Factors</subject><subject>Survival Rate</subject><subject>Thrombolytic Therapy</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkV1v0zAUhi0EGmXwE5BygdB2kXJsx3FSEFIXaBdppRfdNGlCOnIchwXyUeJUsH-Po4TejAuujnTO60evHhNyQWFOAdi7s12apOcUYukDE9EZjeOIUirOqVww-oEJoIvFMv3k79JNzKOPfA7zZPue-ZsnZHZ89pTMgEnph5KK5-SFtd8BHITJE3LieHEU0Bm5WHq6rfeqK23beG3h2V71pe1LrSqvMqpryuabV5v-vs2t5yL9vfHWN7vrrZerXmXKmpfkWaEqa15N85TcrD5fJ5f-1XadJssrXwvGI18b0JpKxYPcFNxQLfM4isIsNIprlmnJBURGsyDICirCwijDQbrGTIMQUPBT8nbk7rv258HYHuvSalNVqjHtwaIEEEHImAvejUHdtdZ2psB9V9aqe0AKOAhGHATjYAoHU_hXMFKJjOIgGNEJxlEwcgRMtshw4-CvpxaHrDb5ET0Zdfc3011Z57DoVKNLe4yxgIdAIxf7OsZ-lZV5eFTwP_r9s960cXh_xLuvNL-PeNX9wFByKfD2yxojvr5brRzvlv8BeQ-ycg</recordid><startdate>19981115</startdate><enddate>19981115</enddate><creator>Ennis, Marguerite</creator><creator>Hinton, Geoffrey</creator><creator>Naylor, David</creator><creator>Revow, Mike</creator><creator>Tibshirani, Robert</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981115</creationdate><title>A comparison of statistical learning methods on the GUSTO database</title><author>Ennis, Marguerite ; Hinton, Geoffrey ; Naylor, David ; Revow, Mike ; Tibshirani, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5238-ce0cc17a34def3e1c7d9886b6ea3c2bc73508ec244bf156feae3070112c0550f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Biological and medical sciences</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Databases as Topic</topic><topic>Humans</topic><topic>Logistic Models</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Myocardial Infarction - drug therapy</topic><topic>Myocardial Infarction - mortality</topic><topic>Neural Networks (Computer)</topic><topic>Risk Factors</topic><topic>Survival Rate</topic><topic>Thrombolytic Therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ennis, Marguerite</creatorcontrib><creatorcontrib>Hinton, Geoffrey</creatorcontrib><creatorcontrib>Naylor, David</creatorcontrib><creatorcontrib>Revow, Mike</creatorcontrib><creatorcontrib>Tibshirani, Robert</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ennis, Marguerite</au><au>Hinton, Geoffrey</au><au>Naylor, David</au><au>Revow, Mike</au><au>Tibshirani, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of statistical learning methods on the GUSTO database</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>1998-11-15</date><risdate>1998</risdate><volume>17</volume><issue>21</issue><spage>2501</spage><epage>2508</epage><pages>2501-2508</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a relatively simple logistic regression model previously developed for this problem. © 1998 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>9819841</pmid><doi>10.1002/(SICI)1097-0258(19981115)17:21&lt;2501::AID-SIM938&gt;3.0.CO;2-M</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 1998-11, Vol.17 (21), p.2501-2508
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_70054622
source MEDLINE; Wiley Online Library All Journals
subjects Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Databases as Topic
Humans
Logistic Models
Medical sciences
Medical statistics
Myocardial Infarction - drug therapy
Myocardial Infarction - mortality
Neural Networks (Computer)
Risk Factors
Survival Rate
Thrombolytic Therapy
title A comparison of statistical learning methods on the GUSTO database
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T15%3A59%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20statistical%20learning%20methods%20on%20the%20GUSTO%20database&rft.jtitle=Statistics%20in%20medicine&rft.au=Ennis,%20Marguerite&rft.date=1998-11-15&rft.volume=17&rft.issue=21&rft.spage=2501&rft.epage=2508&rft.pages=2501-2508&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/(SICI)1097-0258(19981115)17:21%3C2501::AID-SIM938%3E3.0.CO;2-M&rft_dat=%3Cproquest_cross%3E70054622%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70054622&rft_id=info:pmid/9819841&rfr_iscdi=true