A comparison of statistical learning methods on the GUSTO database

We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics in medicine 1998-11, Vol.17 (21), p.2501-2508
Hauptverfasser: Ennis, Marguerite, Hinton, Geoffrey, Naylor, David, Revow, Mike, Tibshirani, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply a battery of modern, adaptive non‐linear learning methods to a large real database of cardiac patient data. We use each method to predict 30 day mortality from a large number of potential risk factors, and we compare their performances. We find that none of the methods could outperform a relatively simple logistic regression model previously developed for this problem. © 1998 John Wiley & Sons, Ltd.
ISSN:0277-6715
1097-0258
DOI:10.1002/(SICI)1097-0258(19981115)17:21<2501::AID-SIM938>3.0.CO;2-M