A dileucine motif in HIV-1 Nef acts as an internalization signal for CD4 downregulation and binds the AP-1 clathrin adaptor
Human immunodeficiency virus 1 (HIV-1) Nef downregulates surface expression of CD4, an integral component of the functional HIV receptor complex, through accelerated endocytosis of surface receptors and diminished transport of CD4 from the Golgi network to the plasma membrane [1–3]. HIV-1 Nef also d...
Gespeichert in:
Veröffentlicht in: | Current biology 1998-11, Vol.8 (22), p.1235,S1-1238,S1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human immunodeficiency virus 1 (HIV-1) Nef downregulates surface expression of CD4, an integral component of the functional HIV receptor complex, through accelerated endocytosis of surface receptors and diminished transport of CD4 from the Golgi network to the plasma membrane [1–3]. HIV-1 Nef also diminishes surface expression of major histocompatibility complex (MHC) class I antigens [4]. In the case of HIV-2 and simian immunodeficiency virus 1 (SIV-1) Nef, aminoterminal tyrosine-based motifs mediate the binding of Nef to the AP-1 and AP-2 adaptors and this interaction appears to be required for CD4 downregulation [5,6]. As these tyrosine motifs are not present in the HIV-1 Nef protein, the molecular basis for the presumed interaction of Nef with components of the endocytic machinery is unknown. Here, we identify a highly conserved dileucine motif in HIV-1 Nef that is required for downregulation of CD4. This motif acts as an internalization signal in the context of a CD8-Nef chimera or in a fusion of the interleukin-2 receptor α with an 11-amino-acid region from Nef containing the dileucine motif. Finally, HIV-1 Nef binds to the AP-1 adaptor, both in vitro and in vivo, in a dileucine-dependent manner. We conclude that this conserved dileucine motif in HIV-1 Nef serves as a key interface for interaction with components of the host protein trafficking machinery. Our findings also reveal an evolutionary difference between HIV-1 and HIV-2/SIV in which the Nef proteins utilize structurally distinct motifs for binding cellular adaptors. |
---|---|
ISSN: | 0960-9822 1879-0445 |
DOI: | 10.1016/S0960-9822(07)00517-9 |