Induction and Control of Chromoplast-specific Carotenoid Genes by Oxidative Stress

The differentiation of chloroplasts into chromoplasts involves a series of biochemical changes that culminate with the intense accumulation of long chain chromophore carotenoids such as lycopene, rhodoxanthin, astaxanthin, anhydroeschsoltzxanthin, capsanthin, and capsorubin. The signal pathways medi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-11, Vol.273 (46), p.30651-30659
Hauptverfasser: Bouvier, Florence, Backhaus, Ralph A., Camara, Bilal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The differentiation of chloroplasts into chromoplasts involves a series of biochemical changes that culminate with the intense accumulation of long chain chromophore carotenoids such as lycopene, rhodoxanthin, astaxanthin, anhydroeschsoltzxanthin, capsanthin, and capsorubin. The signal pathways mediating these transformations are unknown. Chromoplast carotenoids are known to accumulate in green tissues experiencing stress conditions, and studies indicate that they provide efficient protection against oxidative stress. We tested the role of reactive oxygen species (ROS) as regulators of chromoplast carotenoid biosynthesis in vivo. The addition of ROS progenitors, such as menadione,tert-butylhydroperoxide, or paraquat and prooxidants such as diamide or buthionine sulfoximine to green pericarp discs of pepper fruits rapidly and dramatically induce the simultaneous expression of multiple carotenogenic gene mRNAS that give rise to capsanthin. Similarly, down-regulation of catalase by amitrole induces expression of carotenogenic gene mRNAs leading to the synthesis of capsanthin in excised green pericarp discs. ROS signals from plastids and mitochondria also contribute significantly to this process. Analysis of the capsanthin-capsorubin synthase promoter in combination with a β-glucuronidase reporter gene reveals strong activation in transformed pepper protoplasts challenged with the above ROS. Collectively these data demonstrate that ROS act as a novel class of second messengers that mediate intense carotenoid synthesis during chromoplast differentiation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.46.30651