Mechanism of copper-catalyzed autoxidation of cysteine
The kinetics of copper-catalyzed autoxidation of cysteine and its derivatives were investigated using oxygen consumption, spectroscopy and hydroxyl radical detection by fluorescence of a coumarin probe. The process has complex two-phase kinetics. During the first phase a stoichiometric amount of oxy...
Gespeichert in:
Veröffentlicht in: | Free radical research 1999-01, Vol.31 (1), p.23-34 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The kinetics of copper-catalyzed autoxidation of cysteine and its derivatives were investigated using oxygen consumption, spectroscopy and hydroxyl radical detection by fluorescence of a coumarin probe. The process has complex two-phase kinetics. During the first phase a stoichiometric amount of oxygen (0.25 moles per mole of thiol) is consumed without production of hydroxyl radicals. In the second reaction phase excess oxygen is consumed in a hydrogen peroxide-mediated process with significant ·OH production. The reaction rate in the second phase is decreased for cysteine derivatives with a free aminogroup and increased for compounds with a modified aminogroup. The kinetic data suggest the catalytic action of copper in the form of a cysteine complex. The reaction mechanism consists of two simultaneous reactions (superoxide-dependent and peroxide-dependent) in the first phase, and peroxide-dependent in the second phase. The second reaction phase begins after oxidation of free thiol. This consists of a Fenton-type reaction between cuprous-cysteinyl complex and following oxidation of cysteinyl radical to sulfonate with the consumption of excessive oxygen and significant production of hydroxyl radicals. |
---|---|
ISSN: | 1071-5762 1029-2470 |
DOI: | 10.1080/10715769900300571 |